M,

Theorem 5-13: SAS Inequality (Hinge Theorem)

If two sides of one triangle are congruent to two sides of another triangle, and the included angle of the first is larger than the included angle of the second, then the third side of the first is longer than the third side of the second.

Theorem 5-14: sss Inequality

If two sides of one triangle are congruent to two sides of another triangle, and the third side of the first is longer than the third side of the second, then the included angle of the first is larger than the included angle of the second.

1

$43-1$

Example 1: Complete with $<,>$, or $=$.
 Name the theorem used.

a) $m \angle_{1} \leq m \angle 2$
b) $\mathrm{NQ} \geq \mathrm{KL}$

c) $\mathrm{DC} \leq \mathrm{FE}$ SAS lIned.

Example 2: Compare with <, >, or $=$. Name the theorem used.
a) $\mathrm{m} \angle$ ABD, $\mathrm{m} \angle \mathrm{DEF}$ $m \angle A E D>m \angle D E F$ SSS Ineq.

b) $D E, E C$

SAS ineq.

Example 3; Compare with <, >, or $=$. Name the theorem used.

a) $\mathrm{m} \angle \mathrm{ADC}, \mathrm{m} \angle \mathrm{ADB}$ $m \angle A D C<m \angle A D B$ SSS ineq.

b) $\mathrm{m} \angle \mathrm{AFB}, \mathrm{m} \angle \mathrm{BFD}$ $m \angle A F B _m \angle B F D$ SSS Ineq.

Example 4: Use an inequality to describe a restriction on the value of x.
a)

b)

$x>9$

$$
\begin{aligned}
& 3 x+1>x+3 \\
& \frac{3 x+-x}{2 x+1>-3} \\
& \frac{2 x-1>-1}{2}>\frac{2}{2}
\end{aligned}
$$

$$
x>1
$$

4) $\overline{H J}, \overline{K P}$

5) $m \angle 1, m \angle 2$

6) $m \angle 3, m \angle 4$

7) $m \angle P R Q, m \angle P R S$

SSS ineq.
8) $\overline{F H}, \overline{G E}$

$K P>K G$
SAS
Ineq:

10)

11)

