

Clearly sides in a triangle that are longest are across from the largest angles, and sides that are shortest are across from the smallest angles.

Theorem 5-10

If one side of a triangle is longer than another side, then the angle opposite the longer side is larger than the angle opposite the shorter side.

Because DF > ED, $m \angle E>m \angle F$.

Theorem 5-11

If one angle of a triangle is larger than another angle, then the side opposite the larger angle is longer than the side opposite the smaller angle.

Because $m \angle E>m \angle F$,

$$
D F>E D .
$$

Example 1

List the angles of $\triangle A B C$ from the smallest to the largest.
$A B=17, B C=21, A C=18$

Example 2
List the sides of $\triangle A B C$ from the longest to the shortest.
$m \angle A=46^{\circ}, m \angle B=30^{\circ}$

$\overline{A B}, \overline{B C}, \overline{A C}$

Example 3
Draw Triangle RST with vertices $R(-2,4), S(-5,-8)$, and $T(6,10)$. List the angles in order from the greatest measure to the least measure.

Example $4 \sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
Draw Triangle JKL with vertices J(-4,2), K(4,3), and $L(1,-3)$. List the angles in order from the least measure to the greatest measure.

$$
\begin{aligned}
& J K=\sqrt{(4--4)^{2}+(3-2)^{2}} \quad \mid \quad K=\sqrt{(1-4)^{2}+(-3-3)^{2}} \\
& =\sqrt{(8)^{2}+(1)^{2}} \\
& =\sqrt{64+1} \\
& =\sqrt{65} \\
& \pi=\sqrt{(1--4)^{2}+(-3-2)^{2}} \sqrt{50} \\
& =\sqrt{(5)^{2}+(-5)^{2}} \\
& =\sqrt{25+25} \\
& =\sqrt{50}
\end{aligned}
$$

Example 5
List th sides of $\triangle A B C$ from shortest to longest if

$$
\begin{gathered}
m \angle A=9 x+29, m \angle B=93-5 x, \text { and } m \angle C=10 x+2 \\
(9 x+29)+(93-5 x)+(10 x+2)=180
\end{gathered}
$$

$$
\begin{aligned}
m \angle A & =9(4)+29 \\
& =36+29 \\
& =65^{\circ} \\
m \angle B & =93-5(4) \\
& =93-20 \\
& =73^{\circ} \\
m \angle C & =10(4)+2 \\
& =40+2 \\
& =42^{\circ}
\end{aligned}
$$

Example 6
List the angles) of $\triangle D E F$ from largest to smallest if $D E=x+8, E F=3 x-6, D F=2 x+1$, and the perimeter of the triangle is 57 .

