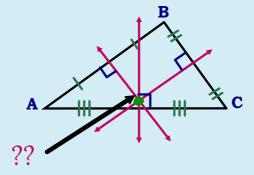
SPECIAL SEGMENTS IN TRIANGLES REVIEW

perpendicular bisector- a line or line segment that passes through the midpoint of a side of a triangle and is perpendicular to that side

The red lines represent the perpendicular bisectors of each side of the triangle ABC.



circumcenter

Perpendicular bisectors have some special properties.

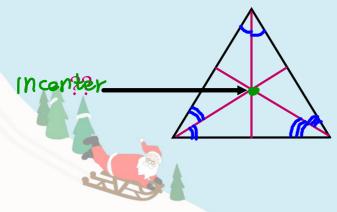
Theorem 5-1 Perp. Bisector Theorem

Any point on the perpendicular bisector of a segment is equidistant from the endpoints of the segment.

Theorem 5-2 Converse of Perp. Bis. Theorem

Any point equidistant from the endpoints of a segment lies on the perpendicular bisector of the segment.

An <u>angle bisector</u> is a segment that bisects an angle of the triangle and has one endpoint at a vertex of the triangle and the other endpoint at another point on the triangle.



Angle bisectors will <u>always</u> intersect inside the triangle!

Angle bisectors have some special properties.

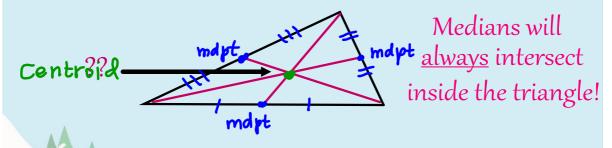
Theorem 5-3 Angle Bisector Theorem

Any point on the bisector of an angle is equidistant from the sides of the angle.

Theorem 5-4 Converse of Angle Bis. Theorem

Any point on or in the interior of an angle and equidistant from the sides of an angle lies on the bisector of the angle.

A <u>median</u> is a segment that connects a vertex of a triangle to the midpoint of the opposite side.

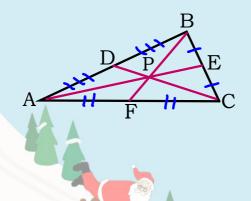


Every triangle has 3 medians.

Medians have some special properties.

Theorem 5-8: Concurrency of Medians in a Triangle

The medians of a triangle intersect at a point that is two-thirds of the distance from each vertex to the midpoint of the opposite side.

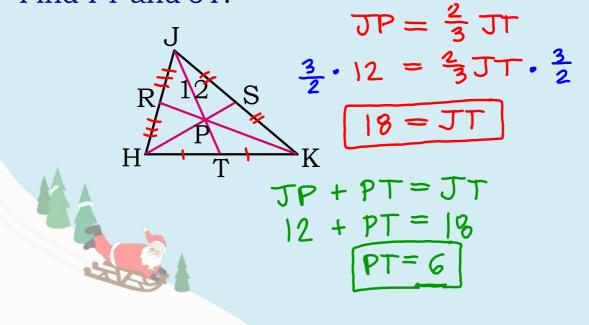


$$AP = \frac{2}{3}AE$$

$$BP = \frac{2}{3}BF$$

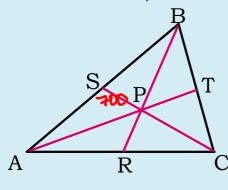
$$CP = \frac{2}{3}CD$$

In \triangle HJK, P is the <u>centroid</u> & JP = 12. Find PT and JT.



EXAMPLE 2

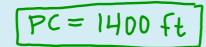
In \triangle ABC, P is the centroid.



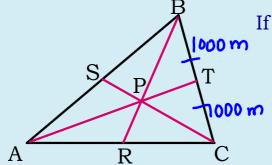
If SC = 2100 ft, find PS & PC.

$$PS = \frac{1}{3}SC$$
 $DC = \frac{1}{2} \cdot 2100$

$$PS = 700 ft$$



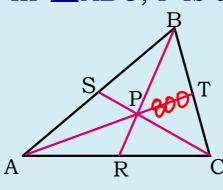
In \triangle ABC, P is the centroid.



If BT = 1000 m, find TC & BC.

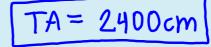
EXAMPLE 4

In \triangle ABC, P is the centroid.



If PT = 800 cm, find PA & TA.

$$PA = 1600 cm$$



EXAMPLE 5
$$\left(\frac{x_1+x_2}{z}, \frac{y_1+y_2}{z}\right)$$
 Midpoint

In \triangle ABC, the vertices are A(1,5), B(5,7), and C(9,3). Find the coordinates of the



EXAMPLE 6

In $\triangle VXW$, the vertices are V(1,1), X(5,2), and W(6,6). Find the coordinates of the

