5.3 Angle Bisectors

Remember: An <u>angle bisector</u> is a ray that divides an angle into two congruent angles.

Theorem 5.6 Converse of Angle Bis. Thm

If a point is in the interior of an angle and is equidistant from the sides of the angle, then it lies on the angle bisector of the angle.

Because BD = CD &D is inside $\angle BAC$, we know that D is on the angle bisector.

Angle bisectors also produce a point of concurrency.

Theorem 5.7 Concurrancy of Angle Bisectors of a Triangle

The angle bisectors of a triangle intersect at a point that is equidistant from the sides of the triangle.

blue lines = *angle bisectors*

pink lines = show the point of concurrency is *equidistant* from all three sides of the triangle

Example 6

Example 8

The angle bisectors of ΔXYZ meet at point M. Find XM and MK.

