5.2 Perpendicular Bisectors

A <u>perpendicular bisector</u> is a segment, ray, line, or plane that is perpendicular to a segment at its midpoint.

A point is <u>equidistant</u> from two figures if the point is the same distance from each figure.

Point C is <u>equidistant</u> from point A & point B. <u>Theorem 5.2</u> *Perpendicular Bisector Theorem* If a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment.

If \overrightarrow{CD} is the perpendicular bisector of \overrightarrow{AB} , then CA = CB.

<u>Theorem 5.3</u> Converse of Perp. Bis. Theorem If a point is equidistant from the endpoints of a segment, then it is on the perpendicular bisector of the segment.

If CA = CB, then \overrightarrow{CD} is the perpendicular bisector of \overline{AB} . **Example 1** In the diagram, \overrightarrow{RS} is the perpendicular bisector of \overrightarrow{PQ} . Find \overrightarrow{PR} . P \overrightarrow{S} \overrightarrow{PQ} \overrightarrow{R} \overrightarrow{S} \overrightarrow{R} \overrightarrow{S} \overrightarrow{R} \overrightarrow{R}

Example 2

In the diagram, \overleftarrow{JM} is the perpendicular bisector of \overrightarrow{HK} .

- a) Which lengths in the diagram are equal? HJ = JK LH = LK HM = MK
- b) Is L on $\overline{JM?} \leftarrow \bot$ bis. Why or why not? Yes b/c $LH \simeq LK$

The <u>distance from a point to a line</u> is defined as the length of the perpendicular segment from the point to the line.

Draw the segment that represents the distance from point P to line m.

When three or more lines, rays, or segments intersect in the same point, they are called concurrent.

The point of intersection is called the *point of concurrency*.

The point of concurrency of the three perpendicular bisectors of a triangle is called the circumcenter.

Acute triangle: circumcenter is *inside* the triangle Right triangle: circumcenter is *on* the triangle Obtuse triangle: circumcenter is *outside* the triangle

<u>Theorem 5.4 Concurrency of Perp. Bis. of a Δ </u> The perpendicular bisectors of a triangle intersect at a point that is equidistant from the vertices of the triangle.

If \overline{PD} , \overline{PE} , & \overline{PF} are perpendicular bisectors, *then* PA = PB = PC.

circumcenter is equidistant from 3 vertices

5.2 Perpendicular Bisectors (work).notebook

Example 3

Frozen lemonade is sold from points A & B, and also from a cart at point C. Where could the frozen lemonade distributor be located if it is equidistant from those three points? Sketch the triangle to show the location.

