5.1 Perpendicular Bisectors and Angle Bisectors

A perpendicular bisector is a segment, ray, line, or plane that is perpendicular to a segment at its midpoint.

A point is equidistant from two figures if the point is the same distance from each figure.

Point C is equidistant from point A & point B.
Theorem 5.1 **Perpendicular Bisector Theorem**

If a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment.

If \overline{CD} is the perpendicular bisector of \overline{AB}, then $CA = CB$.

Theorem 5.2 **Converse of Perp. Bis. Theorem**

If a point is equidistant from the endpoints of a segment, then it is on the perpendicular bisector of the segment.

If $CA = CB$, then \overline{CD} is the perpendicular bisector of \overline{AB}.
Example 1

In the diagram, \(\overline{RS} \) is the perpendicular bisector of \(\overline{PQ} \). Find \(PR \).

\[
\begin{align*}
8x - 9 &= 6x \\
-8x &
\end{align*}
\]

\[
\begin{align*}
-x &= \frac{-2x}{-2} \\
0 &= \frac{9}{2} - x
\end{align*}
\]

\[PR = 8\left(\frac{9}{2}\right) - 9\]

\[PR = 36 - 9\]

\[PR = 27\]

Example 2

In the diagram, \(\overline{JM} \) is the perpendicular bisector of \(\overline{HK} \).

a) Which lengths in the diagram are equal?

- \(LH = LK \)
- \(HJ = JK \)
- \(HM = MK \)

b) Is \(L \) on \(\overline{JM} \)?

Why or why not?

\(L \) is on \(\overline{JM} \) b/c it is equidistant to \(H \) & \(K \).
The **distance from a point to a line** is defined as the length of the perpendicular segment from the point to the line.

Draw the segment that represents the distance from point P to line m.

Remember: An **angle bisector** is a ray that divides an angle into two congruent angles.
Theorem 5.3 **Angle Bisector Theorem**

If a point is on the bisector of an angle, then it is equidistant from the two sides of the angle.

![Diagram](image)

Because D is on AD, we know that $BD = CD$.

Theorem 5.4 **Converse of Angle Bis. Thm**

If a point is in the interior of an angle and is equidistant from the sides of the angle, then it lies on the angle bisector of the angle.

![Diagram](image)

Because $BD = CD$ & D is inside $\angle BAC$, we know that D is on the angle bisector.
Example 3
Find LM.
\[LM = 5 \]

Example 4
For what value of \(x \) does \(P \) lie on the angle bisector?

\[
\begin{align*}
13x &= 11x + 8 \\
\frac{2x}{2} &= \frac{8}{2}
\end{align*}
\]
\[x = 4 \]

Example 5
Find the value of \(x \).
\[x + 3 = 10 \\
\[x = 7 \]

Example 6
Find the value of \(x \).

\[
\begin{align*}
6x + 14 &= 9x - 1 \\
6x &= 9x - 1 - 14
\end{align*}
\]
\[14 = 3x - 1 + 1 \\
\[x = \frac{15}{3} \]
\[x = 5 \]

Example 7
Find the value of \(x \).