3.6 Direct Variation

Gloria works for her cousin as her assistant. She earns $\$ 9.25$ per hour. The table below relates the number of hours that she works (x) and her pay (y).

\# of hours	1	2	3	4	5
pay	$\$ 9.25$	$\$ 18.50$	$\$ 27.75$	$\$ 37.00$	$\$ 46.25$

Gloria's income depends directly on the number of hours that she works. The relationship between the number of hours worked and her income is shown by the equation $y=9.25 x$.

$y=9.25 x$ is called a direct variation

$x \& y$ are going in the same direction

- If x goes up, then y goes up.
- If x goes down, then y goes down.

A direct variation equation is in the form

$$
\begin{aligned}
& \quad y=\uparrow_{\uparrow} \mathrm{l} \text {, where } \mathrm{k} \neq 0 \text {. } \\
& \text { constant of variation }
\end{aligned}
$$

Example 1
Find the constant of variation.
a) $y=3 x$
b) $d=4 t$
c)

$$
\begin{aligned}
& \frac{1}{5} m=n \\
& k=\frac{1}{5}
\end{aligned}
$$

d) $-8 \mathrm{c}=\mathrm{d}$

$$
k=3
$$

$$
k=4
$$

$$
k=-8
$$

Example 2 solve for K
Find the constant of variation.
a) $x=3$ when $y=12$
b) $x=36$ when $y=6$

$$
\begin{gathered}
y=k x \\
\frac{12}{3}=\frac{k \cdot 3}{3} \\
4=k
\end{gathered}
$$

$$
\begin{gathered}
y=k x \\
6 \div k \cdot 36 \\
\frac{36 \div 6}{36} \\
\frac{1}{6}=k
\end{gathered}
$$

Example 3
The variables x and $\sqrt{\text { vary directly. Use the given values to write a }}$ direct variation equation that relates x and y.
a) $x=2, y=16$

b) $x=21, y=3$

$$
\begin{gathered}
y=k x \\
\frac{3}{21}=\frac{k \cdot 21}{21} \\
\frac{1}{7}=k \\
y=\frac{1}{7} x
\end{gathered}
$$

Example 4
Graph each equation.

$$
K=\text { slope }
$$

a) $y=\frac{\downarrow}{2} \frac{\downarrow}{1}+0 \quad y$-int $=0$

b) $y=-3 x$
$m=\frac{-3}{1}$

Example 5
$y=k x$
Tell whether each equation represents direct variation. If so, identify the constant of variation.
a) $-x+y=1$

$y-\ln t=1$
not direct variation
(should have a y-int
of zero)
b) $2 x+y=0$
$\frac{-2 x-2 x}{y=-2 x}$
$y=-2 x+0$
direct Variation
$k=-2$
y varies directly as x and $y=6$ when $x=8$,
find y when $x=12$.

$$
\begin{aligned}
& \begin{array}{l}
=k x \\
\frac{\zeta}{8}
\end{array}=\frac{k \cdot 8}{8}
\end{aligned}
$$

$$
\begin{aligned}
& y=\frac{3}{4} x \quad<\quad \frac{3}{4}=k \\
& y=\frac{3}{4} \cdot 12 \\
& y=9
\end{aligned}
$$

Example 7
If y varies directly as x and $y=\frac{1}{4}$ when $x=\frac{1}{8}$,
find x when $y=\frac{3}{16} . \quad y=k x$

$$
\frac{8}{1} \cdot \frac{1}{4}=k \cdot \frac{1}{8} \cdot \frac{9}{1}
$$

$$
\begin{aligned}
y & =2 x \quad 2=k \\
\frac{1}{2} \cdot \frac{3}{16} & =2 x \cdot \frac{1}{2} \\
\frac{3}{32} & =x
\end{aligned}
$$

The weight of an object on the $\frac{m}{m o d}=\boldsymbol{m}=\boldsymbol{K} \cdot \boldsymbol{e}$ or Earth. With all his gear on, Neil Armstrong weighed 360 pounds on Earth, but when he stepped on the moon on July 20, 1969, he weighed 60 pounds. Kristina weighs 108 pounds on Earth. What would she weigh on the moon?

$$
\begin{array}{rlrl}
m & =k \cdot e \\
\frac{60}{360} & =\frac{k \cdot 360}{360} & m & m=\frac{1}{6} \cdot e \\
\frac{1}{1} & =k & m & =\frac{1}{6} \cdot 108 \\
m & =18 \text { pounds }
\end{array}
$$

Example 9

$$
\begin{aligned}
y & =k x \\
v & =k \cdot c \\
\frac{110}{55} & =\frac{k \cdot 55}{55} \\
2 & =k
\end{aligned} \longrightarrow \begin{aligned}
& v=2 \cdot c \\
& v=2 \cdot 66 \\
& \hline v=132 \mathrm{volts}
\end{aligned}
$$

$$
y=k x
$$

A car uses 8 gàlonsendent of gasoline to travel dependent 290 miles much gasoline will the car use to travel 400 miles?

$$
\begin{array}{rlrl}
y & =k x \\
\frac{290}{8} & =\frac{k \cdot 8}{8} \\
36.25 & =k & \frac{400}{36.25}=\frac{36.25 x}{36.25} \\
& \frac{320}{29} \text { gallons }=x
\end{array}
$$

Example 41 Cost depends
If 4 pounds of peanuts cost $\$ 7.50,7,50$
a) Find the constant of variation

$$
\frac{7.50}{4}=\frac{k \cdot 4}{4}
$$

$$
1.875=k
$$

$$
\$ 1.88=k
$$

b) Write a direct variation equation.

$$
y=1.88 x
$$

c) Use your equation to find the cost of 2.5 lb of peanuts?

$$
\begin{aligned}
& y=(1.88)(2.5) \\
& y=\$ 4.70
\end{aligned}
$$

