5.1 Midsegment Theorem

A midsegment of a triangle is a segment that connects the midpoints of two sides of the triangle.

Activity $\quad\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$ Mdpt Formula
Plot the following points: $\underline{C(-1,4),} D(5,2), \& E(3,0)$. Connect to form a triangle.

$$
\text { Find the midpoint of } C E \text { and name it } Q .
$$

$$
\left(\frac{-1+3}{2}, \frac{4+0}{2}\right) \rightarrow(1,2)
$$

Find the midpoint of $C D$ and name it P.

$$
\left(\frac{-1+5}{2}, \frac{4+2}{2}\right) \rightarrow(2,3)
$$

Plot and connect points Q and P.
Find the length of $x_{Q} x_{\text {ar ld }}{ }^{2} E .\left(y_{2}-y_{1}\right)^{2}$

$$
\begin{aligned}
& P Q=\sqrt{(2-1)^{2}+(3-2)^{2}} \\
& \\
& =\sqrt{1+1} D E=\sqrt{(3-5)^{2}+(0-2)^{2}} \\
& \\
& \\
& =\sqrt{2}
\end{aligned} \quad \begin{aligned}
& =\sqrt{4+4} \\
& =\sqrt{8}=2 \sqrt{2}
\end{aligned}
$$

What do you think the relationship is between these lines?

Theorem 5.1 Midsegment Theorem

The segment connecting the midpoints of two sides of a triangle (midsegment) is parallel to the third side and is half as long as that side.

BE is the midsegment
$B E$ is parallel to $C D$
\qquad .
$B E=\frac{1}{2} C D$ or $C D=2 B E$

Example 1

$\overline{K P}$ is a midsegment of $\triangle A B C$.
Find the value of x.

Example 2

$\overline{\overline{K P}}$ is a midsegment of $\triangle A B C$.
Find the value of $x . \quad P K=\frac{1}{2} A B$

Example 3

Fill in the blanks.

Example 4
Use $\triangle A B C$, where $\overline{J K}$ and $\overline{K L}$ are midsegments. Find $J K$ and $A B$.

$$
\begin{aligned}
& J K=\frac{1}{2} A C \\
& J K=\frac{1}{2} \cdot 10=5 \\
& A B=2 L K \\
& A B=2 \cdot 6=12
\end{aligned}
$$

Example 5
Use $\triangle M N O$, where $X, Y, \& Z$ are midpoints of the sides.

$$
\begin{gathered}
\text { If } Y X=3 x-4 \\
\text { and } M O=9 x-20,
\end{gathered}
$$ find $M O$.

$$
\begin{aligned}
& M O=9(4)-20 \\
& M O=16
\end{aligned}
$$

$$
\begin{aligned}
& M O=2 \cdot x Y \\
& 9 x-20=2(3 x-4) \\
& 9 x-20=6 \not x-8 \\
&-6 X-6 x \\
& \hline 3 x-20=-8 \\
& \frac{3 x}{20}=\frac{12}{3} \quad x=4
\end{aligned}
$$

Example 6
Use $\triangle M N O$, where $X, Y, \& Z$ are midpoints of the sides.

If $Y Z=2 x+3$
and $M N=5 x-14$,
find $Y Z$.

$$
\begin{aligned}
& Y Z=2(20)+3 \\
& Y Z=43
\end{aligned}
$$

$$
2 x+3=\frac{1}{2}(5 x-14)
$$

$2 x+3=\frac{5}{2} x-7$

$$
\frac{-\frac{5}{2} x}{2}
$$

$$
\begin{aligned}
& \frac{2}{2} A+\frac{\sqrt{2} x}{-\frac{1}{2} x+3}=-7 \\
& \hline-3
\end{aligned}
$$

$-\frac{2}{1}$.

$$
\begin{aligned}
-\frac{1}{2} x & =-10^{\circ}-\frac{2}{1} \\
x & =20
\end{aligned}
$$

Example 7
Use $\triangle M N O$, where $A, B, \& C$ are midpoints of the sides.

$$
\begin{aligned}
& M C=3(6)-5 \\
& M C=13
\end{aligned}
$$

$$
\begin{gathered}
\text { If } A B=3 y-5 \\
\text { and } O M=4 y+2, \\
\text { find } M C . \\
A B=\frac{1}{2} O M \\
3 y-5=\frac{1}{2}(4 y+2) \\
3 y-5=-2 y+1 \\
\frac{-2 y-5=1}{y-5=+5} \\
\frac{y=6}{y+5}
\end{gathered}
$$

