3.3 Part 2 REMAINDER & FACTOR THEOREMS

REMAINDER THEOREM

If the polynomial P(x) is divided by x - c, then the remainder is the value P(c).

Example 1

Use synthetic division and the Remainder Theorem to evaluate P(c) if $P(x) = x^3 - 2x^2 - 5x + 10$ and c = 1.

$$P(1) = (1)^{3} - 2(1)^{2} - 5(1) + 10$$

$$= 1 - 2 - 5 + 10$$

$$= 4$$

$$rem.$$

Example 2

Use synthetic division and the Remainder Theorem to evaluate P(c) if $P(x) = x^3 + 2x^2 - 7$ and c = -2.

Example 3

Find the remainder when $P(x) = 3x^3 + 4x^2 - 2x + 1$ is divided by $x - \frac{2}{3}$.

$$\frac{2}{3}$$
 $\frac{3}{4}$ $\frac{4}{7}$ $\frac{7}{3}$ $\frac{3}{3}$ $\frac{4}{7}$ $\frac{7}{3}$ $\frac{7}{3}$ $\frac{7}{3}$ $\frac{7}{3}$ $\frac{7}{3}$ $\frac{7}{3}$ $\frac{7}{3}$

FACTOR THEOREM

For a polynomial P(x), x - c is a factor if and only if P(c) = 0.

Example 4

Let $P(x) = x^3 - 7x + 6$ Show that P(1) = 0, and use this fact to factor P(x) completely.

$$\frac{1}{x = 1} \frac{1}{1 - 6} \frac{0}{0}$$

$$\frac{(x-1)(x^2 + x - 6)^{rem}}{(x-1)(x+3)(x-2)} = P(x)$$

Example 5

Let $P(x) = 2x^3 - 3x^2 - 11x + 6$ Show that P(-2) = 0, and use this fact to find all other zeros of P(x).

Example 6

Let $P(x) = x^4 - 6x^3 + 3x^2 + 26x - 24$. Show that the given values of c are zeros of P(x), and find all other zeros of P(x).

$$c = 3, c = -2 \qquad 3 \qquad | -3 \qquad 3 \qquad 26 \qquad -24$$

$$-2 \qquad | -3 \qquad -6 \qquad 8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -3 \qquad -6 \qquad 8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -3 \qquad -6 \qquad 8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -3 \qquad -6 \qquad 8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -3 \qquad -6 \qquad 8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -3 \qquad -6 \qquad -8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -3 \qquad -6 \qquad -8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -3 \qquad -6 \qquad -8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -3 \qquad -6 \qquad -8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -3 \qquad -6 \qquad -8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -3 \qquad -6 \qquad -8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -3 \qquad -6 \qquad -8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -3 \qquad -6 \qquad -8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -3 \qquad -6 \qquad -8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -3 \qquad -6 \qquad -8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -4 \qquad -8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -2 \qquad -8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -2 \qquad -8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -2 \qquad -8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -2 \qquad -8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -2 \qquad -8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -2 \qquad -8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -2 \qquad -8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -2 \qquad -8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -2 \qquad -8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -2 \qquad -8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -2 \qquad -8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -2 \qquad -8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -2 \qquad -8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -2 \qquad -8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -2 \qquad -8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -2 \qquad -8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -2 \qquad -8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -2 \qquad -8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -2 \qquad -8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -2 \qquad -8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -2 \qquad -8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -2 \qquad -8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -2 \qquad -8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -2 \qquad -8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -2 \qquad -8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -2 \qquad -8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -2 \qquad -8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -2 \qquad -8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -2 \qquad -8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -2 \qquad -8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -2 \qquad -8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -2 \qquad -8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -2 \qquad -8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -2 \qquad -8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -2 \qquad -8 \qquad 0 \qquad | -24$$

$$-2 \qquad | -2 \qquad -8 \qquad | -24$$

$$-2 \qquad | -2 \qquad -8 \qquad | -24$$

$$-2 \qquad | -2 \qquad -8 \qquad | -24$$

$$-2 \qquad | -2 \qquad -8 \qquad | -24$$

$$-2 \qquad | -2 \qquad -8 \qquad | -24$$

$$-2 \qquad | -2 \qquad -8 \qquad | -24$$

$$-2 \qquad | -2 \qquad -8 \qquad | -24$$

$$-2 \qquad | -2 \qquad -10 \qquad | -2 \qquad -10$$

$$-2 \qquad | -2 \qquad -10 \qquad | -2 \qquad -10$$

$$-2 \qquad | -2 \qquad -10 \qquad | -2 \qquad -10$$

$$-2 \qquad | -2 \qquad -10 \qquad | -2 \qquad -10$$

$$-2 \qquad | -2 \qquad -10 \qquad | -2 \qquad -10$$

$$-2 \qquad | -2 \qquad -10 \qquad | -2 \qquad -10$$

$$-2 \qquad | -2 \qquad -10 \qquad | -2 \qquad -10$$

$$-2 \qquad | -2 \qquad -10 \qquad | -2 \qquad -10$$

$$-2 \qquad | -2 \qquad -10 \qquad | -2 \qquad -10$$

Example 7

Find a polynomial of degree 4 that has zeros -3, 0, 1, and 5.

$$\begin{array}{c} \times (x+3)(x-1)(x-5) \\ (x^{2}+3x)(x^{2}-6x+5) \\ x^{2}(x^{2}-6x+5) + 3x(x^{2}-6x+5) \\ x^{4}-6x^{3}+5x^{2}+3x^{3}-19x^{2}+15x \\ \hline (x^{4}-3x^{3}-13x^{2}+15x) \end{array}$$

Example 8

Find a polynomial of degree 5 that has zeros -2, -1, 0, 1, and 2.

$$(x+2)(x+1) \times (x-1)(x-2)$$

 $\times (x+2)(x-2)(x+1)(x-1)$
 $\times (x^2-4)(x^2-1)$
 $\times (x^4-5x^2+4)$
 x^5-5x^3+4x