4.6 Isosceles, Equilateral, \& Right Triangles ISOSCELES TRIANGLE

Theorem 4.6: Base Angle Theorem
If two sides of a triangle are congruent, then the angles opposite them are congruent.

Theorem 4.7: Converse of Base Angle Theorem If two angles of a triangle are congruent, then the sides opposite them are congruent.

Example 1

In isosceles $\triangle \mathrm{ISO}$ with base SO , $\mathrm{m} \angle \mathrm{S}=5 \mathrm{x}-18$ and $\mathrm{m} \angle \mathrm{O}=2 \mathrm{x}+21$.
Find the measure of each angle of the triangle.

$5 x-18$

$m \angle S=47^{\circ}$
$m \angle 0=2(13)+21$
$\begin{aligned} 5 x-18 & =2 x+21 \\ -2 x & -2 x\end{aligned}$
$m \angle 0=47^{\circ}$
$m \angle I=86^{\circ}$

$$
\begin{gathered}
\frac{+18+18}{\frac{3 x}{3}=\frac{39}{3}} \\
x=13
\end{gathered}
$$

Example 2

In isosceles $\triangle \mathrm{DEF}, \angle \mathrm{D}$ is the vertex angle. If $\mathrm{m} \angle \mathrm{E}=2 \mathrm{x}+40$ and $\mathrm{m} \angle \mathrm{F}=3 \mathrm{x}+22$, find the measure of each angle of the triangle.
$m \angle E=2(18)+40$
$m \angle E=76^{\circ}$
$m \angle F=3(18)+22$
$m \angle F=76^{\circ}$
$m \angle D=28^{\circ}$

$$
\begin{aligned}
& 3 x+40=3 x+22 \\
&-2 x+2 x \\
& \hline 40=x+22 \\
& \hline-22-22 \\
& \hline 18=x
\end{aligned}
$$

Example 3

Complete the statements below.
a) If $\mathrm{HG}=\mathrm{HK}$, then $\angle G=\angle G K H$.
b) If $\angle \mathrm{KHJ}=\angle \mathrm{KJH}$, then $\angle \mathrm{KH}=\kappa J$.

Example 4

Write a two-column proof.
Given: $\mathrm{m} \angle 3=\mathrm{m} \angle 4$
Prove: $\overline{\mathrm{AB}} \cong \overline{\mathrm{BC}}$
Proof:

Statements

(1) $m \angle 3=m \angle 4$
(2) $m \angle 1+m \angle 3=180$ $m \angle 2+m \angle 4=180$
(3) $m \angle 1+m \angle 3=m \angle 2+m \angle 4$
(4) $m \angle 1+m \angle 3=m \angle 2+m \angle 3$
(5) $\frac{m \angle 1}{A B} \cong \frac{m}{B C}$

Reasons

(1) given
(2) linear pair post.
(3) subst. provo.
(4) subst. prod
(5) subtraction prop.
(6) Base Angle Comose

Corollary to Base Angles Theorem If a triangle is equilateral, then it is equiangular.

Corollary to Converse of Base Angles Theorem If a triangle is equiangular, then it is equilateral.

A triangle is equilateral if and only if it is equiangular.

REMEMBER:

Each angle of an equilateral triangle measures 60°.

Example 5

Find the values of x and y.

Example 6
Write a two-column proof.
Given: $\overline{\mathrm{AR}} \cong \overline{\mathrm{AQ}}$

$$
\overline{\mathrm{RS}} \cong \overline{\mathrm{QT}}
$$

Prove: $\overline{\mathrm{AS}} \cong \overline{\mathrm{AT}}$ Proof:

Example 7

Determine whether there is enough information to prove that the triangles are congruent. Explain your answer.
a)

not
enough
info
c)

not
enough info

Theorem 4.8: Hypotenuse-Leg (HL) Congruence Theorem If the hypotenuse and a leg of a right triangle are congruent to the hypotenuse and a leg of a second right triangle, then the two triangles are congruent.

then $\triangle \mathrm{ABC} \cong \triangle \mathrm{XYZ}$ by HL

