4.6 Isosceles, Equilateral, & Right Triangles **ISOSCELES TRIANGLE** The angle formed by the congruent sides is called the <u>vertex angle</u>. The two angles The congruent formed by the base sides are and one of the 1ege 100 called legs. congruent sides are called base angles. base angle -base angle The side opposite the vertex angle is called the base.

<u>Theorem 4.6: Base Angle Theorem</u> If two sides of a triangle are congruent, then the angles opposite them are congruent.

<u>Theorem 4.7: Converse of Base Angle Theorem</u> If two angles of a triangle are congruent, then the sides opposite them are congruent.

Example 1

In isosceles \triangle ISO with base SO, $m \angle S = 5x - 18$ and $m \angle O = 2x + 21$. Find the measure of each angle of the triangle. $m \angle S = 5(13) - 18$ $m \angle S = 47^{\circ}$ $m \angle O = 2(13) + 21$ $m \angle T = 86^{\circ}$ $m \angle T = 86^{\circ}$ Signal constraints of each 5x - 18 = 2x + 21 5x - 18 = 2x + 21 5x - 18 = 21 +18 + 18 3x = 39 3x = 39x = 18

Example 2
In isosceles
$$\triangle DEF$$
, $\angle D$ is the vertex
angle. If $m \angle E = 2x + 40$ and
 $m \angle F = 3x + 22$, find the measure of
each angle of the triangle.
 $m \angle E = 2(10) + 40$
 $m \angle E = 76^{\circ}$
 $m \angle F = 3(10) + 22$
 $m \angle F = 76^{\circ}$
 $m \angle F = 76^{\circ}$
 $m \angle D = 28^{\circ}$
 $m \angle D = 28^{\circ}$

Example 3

Complete the statements below.

- a) If $\overline{HG} = \overline{HK}$, then $\angle \underline{G} = \angle \underline{GKH}$.
- b) If $\angle KHJ = \angle KJH$, then $\underline{\ltimes H} = \underline{\ltimes J}$.

<u>Corollary to Base Angles Theorem</u> If a triangle is equilateral, then it is equiangular.

<u>Corollary to Converse of Base Angles Theorem</u> If a triangle is equiangular, then it is equilateral.

> A triangle is equilateral if and only if it is equiangular.

REMEMBER:

Each angle of an equilateral triangle measures 60°.

Example 5

Find the values of x and y.

<u>Example 6</u> Write a two-column pro	of. A
Given: $\overline{AR} \cong \overline{AQ}$ $\overline{RS} \cong \overline{QT}$	
Prove: $\overline{AS} \cong \overline{AT}$ Proof: Statements	$\begin{array}{c} X \\ R \\ R \\ \end{array} \\ R \\ \end{array} \\ \begin{array}{c} X \\ S \\ T \\ \end{array} \\ \begin{array}{c} X \\ Q \\ \end{array} \\ \begin{array}{c} X \\ T \\ Q \end{array} \\ \begin{array}{c} X \\ Q \\ \end{array} \\ \begin{array}{c} X \\ R \\ \end{array} \\ \end{array} \\ \begin{array}{c} X \\ R \\ \end{array} \\ \begin{array}{c} X \\ R \\ \end{array} \\ \end{array} \\ \begin{array}{c} X \\ R \\ \end{array} \\ \end{array} \\ \begin{array}{c} X \\ R \\ \end{array} \\ \end{array} \\ \begin{array}{c} X \\ R \\ \end{array} \\ \end{array} \\ \begin{array}{c} X \\ R \\ \end{array} \\ \end{array} \\ \begin{array}{c} X \\ R \\ \end{array} \\ \end{array} \\ \begin{array}{c} X \\ R \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} X \\ R \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} X \\ R \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} X \\ R \\ \end{array} \\ \end{array}$
$ \begin{array}{c} \hline \ AR \cong AQ, \ RS \cong QT \\ \hline \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	 I given Base Angle Thm. SAS CPCTC

Example 7

Determine whether there is enough information to prove that the triangles are congruent. Explain your answer.

Theorem 4.8: Hypotenuse-Leg (HL) Congruence Theorem If the hypotenuse and a leg of a right triangle are congruent to the hypotenuse and a leg of a second right triangle, then the two triangles are congruent.

then $\triangle ABC \cong \triangle XYZ$ by HL