4.4 - 4.6 PROVING TRIANGLES CONGRUENT Postulate 19: SSS Postulate Side - Side - Side If the sides of one triangle are congruent to the sides of a second triangle, then the triangles are congruent. $\triangle CXH \cong \triangle MAZ$ SSS Post. Example 1 $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$ $\Delta STU \stackrel{\sim}{\Delta S}$ Given ΔSTU with vertices S(0, 5), T(0, 0), and U(-2, 0) and \triangle XYZ with vertices X(4, 8), Y(4, 3) and Z(6, 3), determine if Δ STU $\cong \Delta$ XYZ. $$ST = \sqrt{(0-0)^{2} + (0-5)^{2}}$$ $$= \sqrt{(0)^{2} + (-5)^{2}}$$ $$= \sqrt{(0)^{2} + (-5)^{2}}$$ $$= \sqrt{0} + 25$$ $$= \sqrt{25} = 5$$ $$TN = \sqrt{(-2-0)^{2} + (0-0)^{2}}$$ $$= \sqrt{(-2)^{2} + (0)^{2}}$$ $$= \sqrt{4+0}$$ \sqrt{4+25}$$ $$= \sqrt{29}$$ $$XY = \sqrt{(4-4)^2 + (3-6)^2}$$ $$= \sqrt{(0)^2 + (-5)^2}$$ $$= \sqrt{0 + 25}$$ $$= \sqrt{25} = 5$$ $$YZ = \sqrt{(6-4)^2 + (3-3)^2}$$ $$= \sqrt{4+0}$$ $$= \sqrt{4+0}$$ $$= \sqrt{4+0}$$ $$= \sqrt{4+0}$$ $$= \sqrt{4+25}$$ $$= \sqrt{4+25}$$ $$= \sqrt{29}$$ Postulate 20: SAS Postulate Side-Angle - Side If two sides and the included angle of one triangle are congruent to two sides and the included angle of another triangle, then the triangles are congruent. \triangle BJW \cong \triangle USK The <u>included angle</u> is the angle formed by two given sides. # Example 2 Write a proof for the following. Given: X is the midpoint of \overline{BD} . X is the midpoint of \overline{AC} . Prove: $\triangle DXC \cong \triangle BXA$ #### Statements ents - 1 X is mapt of BD & AC - 2 XD = XB; XA = XC - 3 LAXB = LCXD - 4) △DXC = △BXA - 1 given - 2) def of mapt - 3) vert 4 = - (P) SAS Postulate 21: ASA Postulate Angle-Side-Angle If two angles and the included side of one triangle are congruent to two angles and the included side of another triangle, the triangles are congruent. The <u>included side</u> is the side of the triangle formed between two given angles. ## Example 3 Write a proof for the following. Given: $\overline{VR} \perp \overline{RS}$, $\overline{UT} \perp \overline{SU}$, $\overline{RS} \cong \overline{US}$ Prove: $\triangle VRS \cong \triangle TUS$ #### Statements - (1) VR LRS, UT LSU, - ② CR is a right C LU is a right C - *3) LR = LU - ¶ LVSR ≅ LUST - S DVKS=DTUS - 1 given - 2 def of 1 - 3 all right Ls = - 4) vert. 15 = - (5) ASA Theorem 4-6: AAS Theorem Angle-Angle-Side If two angles and a nonincluded side of a triangle are congruent to the corresponding two angles and a side of a second triangle, the two triangles are congruent. Example 4 Write a two-column proof. Given: ₹PSU ≅₹PTR Prove: $\triangle SUP \cong \triangle TRP$ Statements ① LPSU≅LPTR, SU≅TR ② ∠P≅LP ③ DSUP≅DTRP - eflexive prop. ## Example 5 Write a two-column proof. <u>∠1</u> and ∠2 are right angles. ST ≅ TP Given: Prove: $\triangle STR \cong \triangle PTR$ #### Statements - 1) <1 & <2 are right <5 - 2 <1 = <2 - DSTR = APTR #### Reasons - ① given - 2) all right ∠s ≅ - reflexive prop- # Example 6 Write a two-column proof. Given: BE bisects AD. $\angle A \cong \angle D$ Prove: $\triangle ABE \cong \triangle DEC$ #### Statements OBE bisects AD; LA=LD - 2) AE = ED - 3 ∠1 = ∠2 - TO ABE = ADEC - 1 given - 2) def of bisect 3) vert 15 are = Theorem 4-8: HL Theorem hypotenuse - (eq If the hypotenuse and a leg of a right triangle are congruent to the hypotenuse and a leg of a second right triangle, then the two triangles are congruent. X first must prove that you have right \(\D's \) # Example 7 Write a two-column proof. Given: AE ⊥CD Prove: $\triangle ACE \cong \triangle ADE$ #### Statements - AE L CD; AC = AD -) 21 & 22 are right 25 - 3 $\triangle ACE & \triangle ADE$ are right \triangle 's 4 $\overline{AE} \cong \overline{AE}$ - S DACE = DADE - given - 2) def of 1 - 3 def of right \triangle - reflexive pop.