3.2 Part 3 Choosing the Best Method

- Graphing is best if...
 - > The directions ask for this
 - > The equations are in slope-intercept form
- Substitution is best if...
 - > A variable has already been isolated
 - > A variable has a coefficient of 1 or -1
- Elimination is best...
 - > Coefficients are already opposites
 - > ALWAYS!

Choose the best method and solve.

1.
$$y = -x + 5$$

 $y = 3x + 1$
 $-x/+5 + 3x + 1$
 $+x$
 $5 + 4x + 1$
 -1
 $4 + 4x$
 $4 + 4x$

Choose the best method and solve.

2.
$$3x - 3y = 15$$

 $y = -2x + 2$
 $y = -2(\frac{7}{3}) + 2$
 $y = -\frac{14}{3} + \frac{6}{3}$
 $y = -\frac{8}{3}$
 $y = -\frac{8}{3}$

Choose the best method and solve.

3.3
$$(-5x + 7y) = (10)3$$

 $15x - 21y = 22$
 $-5x + 21y = 30$
 $0 \neq 52$
no solution

Choose the best method and solve.

4.
$$-2x + 2y = -5 \longrightarrow -2x + 2y = -5$$

 $2(x + y) = (-5)_2 \longrightarrow 2x + 2y = -10$
 $4y = -15$
 $x = -3.75 = -5$
 $x = -3.75 = -5$
 $x = -3.75$
 $x = -1.25$
 $x = -1.25$

5. Tickets for the community play are \$3 for students and \$5 for non-students. On opening night 937 tickets are sold and \$3943 is collected. How many tickets were sold to students? How many were sold to non-students?

$$x = \text{student tickets}$$
 $y = \text{non-student tickets}$
 $3x + 5y = 3943$
 $4x + 5y = 3943$
 $-3x - 3y = -2811$
 $3x + 566 = 937$
 $3x + 566 = 937$