2.4 Average Rate of Change

If you drive 120 miles in 2 hours, then your average speed, or rate of travel, is 60 mph. Suppose you take a car trip and record the distance every few minutes. The distance s you have traveled is a function of the time t: s(t) = total distance traveled at time t

To find your average speed between any two points on the trip, divide the distance traveled by the time elapsed.

Example 1

a) Calculate your average speed between 1:00 and 4:00.

b) Calculate your average speed between 2:00 and 3:00.

$$\frac{25-75}{3:00-2:00} = \frac{50}{1hr} = 50 \text{ mph}$$

Average Rate of Change

The **average rate of change** of the function y = f(x) between x = a and x = b is

average rate of change =
$$\frac{\text{change in } y}{\text{change in } x} = \frac{f(b) - f(a)}{b - a}$$

The average rate of change is the slope of the secant line between x = a and x = b on the graph of f, that is, the line that passes through (a, f(a)) and (b, f(b)).

Algebra Concept
slope =
$$\frac{rise}{rvn}$$

= $\frac{Y_2 - Y_1}{X_2 - X_1}$

$$\frac{\text{Precalculus Concept}}{arc} = \frac{f(b) - f(a)}{b - a}$$

$$f(a) & f(b) \rightarrow \\ & y - value.s$$

$$a & b \rightarrow \\ & x - values$$

Example 2 For the function $f(x) = x^2 + 4$, find the average rate of change of the function between the following points: $arc = \frac{f(6) - f(2)}{6 - 2}$ a) x = 2 and x = 6 $f(2) = 2^2 + 4$ $f(6) = 6^2 + 4$ arc : $arc = \frac{f(10) - f(5)}{10 - 5}$ b) x = 5 and x = 10 **f(5) = 5²+4** $= \frac{104 - 29}{5}$ = 29 75 $f(10) = 10^2 + 4$ = 104 arc

Example 2

For the function $f(x) = x^2 + 4$, find the average rate of change of the function between the following points:

c) $x = a$ and $x = a + h$	$\operatorname{arc} = \frac{f(a+h) - f(a)}{(a+h) - (a)}$
$f(a) = (a+b)^2 + b$	$= (a^{2} + 2ah + h^{2} + 4) - (a^{2} + 4)$
$= a^2 + 2ah + h^2 + 4$	$= q^{4} + 2qh + h^{2} + 4 - q^{2} - 4$
	$= \frac{h(2q+h)}{h}$
	arc = 2a+h

The average rate of change in example c is known as a difference quotient . In calculus, we use difference quotients to calculate instantaneous rates of change.

Example 3

If an object is dropped from a height of 3000 feet, its distance above the ground (in feet) after t seconds is given by $h(t) = 3000 - 16t^2$. Find the object's average speed for the following times:

a) between 1 and 2 seconds h(i) = 3000 - 16(i) ² = 2984	$arc = \frac{h(2) - h(1)}{2 - 1}$ = $\frac{2936 - 2984}{1}$
h(2) = 3000 - 16(2) ² = 2936	arc = -48 ft/sec
b) between 4 and 5 seconds h(4) = 3000 - 16(4) ² = 2744	$arc = \frac{h(5) - h(4)}{5 - 4} = \frac{2600 - 2744}{1}$
h(5) = 3000 - 16(5)2 = 2600	arc = -144 Fb/sec

time	temp (F)	Example 4
8:00 am 9:00 am 10:00 am 11:00 am 12:00 pm 1:00 pm 2:00 pm 3:00 pm 4:00 pm 5:00 pm 6:00 pm	38 40 44 50 56 62 66 67 64 58 55 51	The table gives the outdoor temperature observed by a science student on a spring day. Find the average rate of change in temperature between the following times: a) 8:00 am and 9:00 am b) 1:00 pm and 3:00 pm c) 4:00 pm and 7:00 pm $arc = \frac{T(2) - T(8)}{2 - 8} = \frac{40 - 38}{1} = 2^{\circ}F/hr$
7.00 pm	ب م) arc = $T(3) - T(1) = \frac{67 - 62}{2} = \frac{5}{2} = \frac{2.5^{\circ}F/hr}{3 - 1}$ c) arc = $T(7) - T(4) = \frac{51 - 64}{3} = \frac{-13}{3} \cdot \frac{7}{hr}$

Example 5 Let f(x) = 3x - 5. Find the average rate of change of f(x)between the following points: $\operatorname{arc} = \frac{f(i) - f(o)}{f(o)}$ a) x = 0 and x = 1f(0) = 3(0) - 5=-5 arc = cf(1) = 3(1) - 5= -2 $arc = \frac{f(7) - f(3)}{7 - 3} = \frac{16 - 4}{4}$ b) x = 3 and x = 7f(3) = 3(3) - 5= 4 f(7) = 3(7) - 5= 16 arc :

Example 5 Let f(x) = 3x - 5. Find the average rate of change of f(x)between the following points: c) x = a and x = a + h f(a) = 3(a) - 5 = 3a - 5 f(a+h) - f(a) $arc = \frac{f(a+h) - f(a)}{(a+h) - (a)}$ $- \frac{(3a+3h-5) + (3a+5)}{h}$ f(a+h) = 3(a+h) - 5 = 3a+3h-5arc = 3h

What conclusion can you draw from your answers?

For a linear function, f(x) = mx + b, the average rate of change between any two points is the slope of the line. Why is this true?