2.4 Average Rate of Change

If you drive 120 miles in 2 hours, then your average speed, or rate of travel, is 60 mph . Suppose you take a car trip and record the distance every few minutes. The distance s you have traveled is a function of the time t : $s(t)=$ total distance traveled at time t

To find your average speed between any two points on the trip, divide the distance traveled by the time elapsed.

Example 1

a) Calculate your average speed between 1:00 and 4:00.

b) Calculate your average speed between 2:00 and 3:00.

$$
\frac{125-75}{3: 00-2: 00}=\frac{50}{1 \mathrm{hr}}=50 \mathrm{mph}
$$

Average Rate of Change
The average rate of change of the function $y=f(x)$ between $x=a$ and $x=b$ is

$$
\text { average rate of change }=\frac{\text { change in } y}{\text { change in } x}=\frac{f(b)-f(a)}{b-a}
$$

The average rate of change is the slope of the secant line between $x=a$ and $x=b$ on the graph of f, that is, the line that passes through $(a, f(a))$ and $(b, f(b))$.

Algebra Concept slope $=\frac{\text { rise }}{\text { run }}$ $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$$
\begin{gathered}
\text { Precalculus Concept } \\
\text { arc }=\frac{f(b)-f(a)}{b-a} \\
f(a) \& f(b) \rightarrow \\
y \text {-values } \\
a \quad \begin{array}{l}
\& ~ b \\
x \text {-values }
\end{array}
\end{gathered}
$$

Example 2

For the function $f(x)=x^{2}+4$, find the average rate of change of the function between the following points:
a) $x=2$ and $x=6$

$$
\begin{aligned}
f(2) & =2^{2}+4 \\
& =8
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{arc} & =\frac{f(6)-f(2)}{6-2} \\
& =\frac{40-8}{4}
\end{aligned}
$$

$$
f(6)=6^{2}+4
$$

$=\frac{32}{4}$

$$
=40
$$

$$
a r c=8
$$

b) $x=5$ and $x=10$

$$
\operatorname{arc}=\frac{f(10)-f(5)}{10-5}
$$

$$
\begin{aligned}
f(s) & =s^{2}+4 \\
& =29
\end{aligned}
$$

$$
=\frac{104-29}{5}
$$

$$
f(10)=10^{2}+4
$$

$$
=104
$$

$$
=\frac{75}{5}
$$

```
arc =15
```


Example 2

For the function $f(x)=x^{2}+4$, find the average rate of change of the function between the following points:
c) $x=a$ and $x=a+h$ $f(a)=a^{2}+4$

$$
\operatorname{arc}=\frac{f(a+h)-f(a)}{(a+h)-(a)}
$$

$$
\begin{aligned}
f(a+h) & =(a+h)^{2}+4 \\
& =a^{2}+2 a h+h^{2}+4
\end{aligned}
$$

$$
=\frac{\left(a^{2}+2 a h+h^{2}+4\right)-\left(a^{2}+4\right)}{h}
$$

$$
=\frac{a^{2}+2 a h+h^{2}+4-a^{2}-24}{h}
$$

$$
=\frac{k(2 a+h)}{h}
$$

$$
a r c=2 a+h
$$

The average rate of change in example c is known as a difference quotient. In calculus, we use difference quotients to calculate instantaneous rates of change.

Example 3

If an object is dropped from a height of 3000 feet, its
distance above the ground (in feet) after t seconds is given by
$h(t)=3000-16 t^{2}$. Find the object's average speed for the following
times:

$$
\text { a) } \begin{array}{rlrl}
\text { between } 1 \text { and } 2 \text { seconds } & & \text { arc } & =\frac{h(2)-h(1)}{2-1} \\
h(1) & =3000-16(1)^{2} & & \\
& =2984 & & \frac{2936-2984}{1} \\
h(2) & =3000-16(2)^{2} \\
& =2936 & \text { arc } & =-48 \mathrm{ft} / \mathrm{sec}
\end{array}
$$

b) between 4 and 5 seconds

$$
\begin{aligned}
h(4) & =3000-16(4)^{2} \\
& =2744 \\
h(5) & =3000-16(5)^{2} \\
& =2600
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{arc} & =\frac{h(5)-h(4)}{5-4} \\
& =\frac{2600-2744}{1} \\
\operatorname{arc} & =-144 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

Example 5

Let $f(x)=3 x-5$. Find the average rate of change of $f(x)$ between the following points:
a) $x=0$ and $x=1$
$\operatorname{arc}=\frac{f(1)-f(0)}{1-0}$
$f(0)=3(0)-5$ $=-5$
$=\frac{-2-(-5)}{1}$

$$
\operatorname{arc}=3
$$

$f(1)=3(1)-5$

$$
=-2
$$

b) $x=3$ and $x=7$

$$
f(7)=3(7)-5
$$

$$
=16
$$

$$
\begin{aligned}
\operatorname{arc} & =\frac{f(7)-f(3)}{7-3} \\
& =\frac{16-4}{4} \\
& =\frac{12}{4} \\
\operatorname{arc} & =3
\end{aligned}
$$

Example 5

Let $f(x)=3 x-5$. Find the average rate of change of $f(x)$
between the following points:
c) $x=a$ and $x=a+h$ $f(a)=3(a)-5$ $=3 a-5$

$$
\begin{aligned}
f(a+h) & =3(a+h)-5 \\
& =3 a+3 h-5
\end{aligned}
$$

What conclusion can you draw from your answers?
For a linear function, $f(x)=m x+b$, the average rate of change between any two points is the slope of the line. Why is this true?

