3.6 Prove Theorems About Perpendicular Lines

Theorem 3.8
If two lines intersect to form a linear pair of congruent angles, then the lines are perpendicular.

Theorem 3.9
If two lines are perpendicular, then they intersect to form four right angles.

$$
\begin{aligned}
& \overleftrightarrow{\mathrm{AB}} \perp \stackrel{\rightharpoonup}{\mathrm{BC}} \text {. } \\
& \text { What can } \\
& \text { you } \\
& \text { conclude? }
\end{aligned}
$$

$\angle 18<2$ are
right $\angle 5$
$\angle 1 \& \angle 2$ form
$\angle 1 \& \angle 2$ are supp
$m \angle 1=90 \& m \angle 2=90$
$\angle 1 \cong \angle 2$.
What can
you
conclude?

Theorem 3.10

If two sides of two adjacent acute angles are perpendicular, then the angles are complementary.
$\angle 1 \& \angle 2$ are adj.
$\overline{W Y} \perp \overline{X Z}$.
What can you
conclude about

$\angle 1$ and $\angle 2$?

Theorem 3.11 Perpendicular Transversal Thm. If a transversal is perpendicular to one of two parallel lines, then it is perpendicular to the other.

Theorem 3.12 Lines Perpendicular to a Transversal Theorem In a plane, if two lines are perpendicular to the same line, then they are parallel to each other.

The distance from a point to a line is the length of the perpendicular segment from the point to the line.

The distance between two parallel lines is the length of any perpendicular segment joining the two lines.

Draw the segment that represents the distance from R to $\overline{\mathrm{AB}}$.

Draw the segment that represents

 the distance from W to $\overline{\overline{N K}}$.

Graph the equation $y=2 x-2 . \begin{gathered}m=2 \\ y \rightarrow-i n t=-2\end{gathered}$ Plot the ordered pair $(-4,0)$. Graph a perpendicular line through this point. Find the distance from the point ($-4,0$) and $(-4,0)\binom{0,-2)}{x}$ the original equation.

$$
m=\frac{2}{1}
$$

$$
m_{\perp}=-\frac{1}{2}
$$

Graph the equation $2 x+y=0 . \quad m=\frac{-2}{1}$ Plot the ordered pair $(2,1)^{2 x}$. $\quad y$-int $=0$
Graph a perpendicular line through this point. Find the distance from the point $(2,1)$ and the original equation.

Graph the equation $x-2 y=8$. Plot the ordered pair $(3,-10)$.
Graph a perpendicular line through this point. Find the distance from the point $(3,-10)$ and the original equation.

