3.4 SLOPES OF LINES

The <u>slope</u> of a line is the ratio of its vertical rise to the horizontal run.

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{\text{rise}}{\text{run}}$$

Example 1

Find the slope of each line.

Find the slope of each line.

d

-vertical

Find the slope of each line.

$$m = \frac{1}{2}$$

f.

$$M = \frac{-2}{2} = -1$$

Find the slope of each line.

$$M = \frac{8}{3}$$

h.

$$M = -\frac{3}{2}$$

Postulate 17 Slopes of Parallel Lines

In a coordinate plane, two nonvertical lines are parallel if and only if they have the same slope.

Any two vertical lines are parallel.

Postulate 18 Slopes of Perpendicular Lines

Two nonvertical lines are perpendicular if and only if the product of their slopes is -1.

Horizontal lines are perpendicular to vertical lines. opposite reciprocal slopes

Find the slope of each line. Is $k_1 \parallel k_2$?

$$k_1 \rightarrow m = \frac{4}{2} = 2$$

$$k_2 \rightarrow m = \frac{2}{1} = 2$$

Example 3

Find the slope of each line. Is $b_1 \parallel b_2$?

$$b_1 \rightarrow m = \frac{-5}{2}$$

$$b_2 \longrightarrow m = -\frac{6}{2} = -3$$

b, not $1/b_2$ b/c
not same slope

Find the slope of each line. Determine if the

lines are perpendicular.

perpendicular b/c slopes are opposite reciprocals

Example 5

Find the slope of each line. Determine if the

lines are perpendicular.

m of blue =
$$\frac{-2}{5}$$

m of pink = $\frac{6}{3}$ = 2

not I b/c Slopes aren't opp. rec.

Determine whether lines p₁ and p₂ are perpendicular. y=mx+b

line
$$p_1$$
: $y = 3x + 5$ $m = 3$
line p_2 : $y = \frac{1}{3}x + 5$ $m = \frac{1}{3}$
 $p_1 & p_2$ are not \perp
 b/c Slopes aren't
opp. rec.

Example 7

Determine whether lines p₁ and p₂ are PI P2

perpendicular.

line p₁:
$$9x = 4 + 7y$$

line p₂: $7x + 9y = -5$

$$\frac{9x = 4 + 7y}{-4 + 4} = \frac{7x + 9y = -5}{-7x}$$

$$\frac{9x - 4 - 7}{7} = \frac{7y}{7} = \frac{7y - 7}{7}$$

$$\frac{9x - 4 - 7}{7} = \frac{7y}{7} = \frac{7x - 5}{7}$$

$$\frac{2}{7}x - \frac{4}{7} = y$$

$$M = \frac{2}{7}$$

$$M = \frac{2}{7}$$

Given A(-3, -2), B(9, 1), C(3, 6), and D(5, -2), determine if \overrightarrow{AB} is parallel or perpendicular to \overrightarrow{CD} .

 $M = \frac{\gamma_2 - \gamma_1}{\chi_2 - \chi_1} \qquad M = \frac{\gamma_2 - \gamma_1}{\chi_2 - \chi_1}$

$$M = \frac{1+2}{9+3}$$

$$M = \frac{3}{12}$$

$$M = \frac{1}{4}$$

$$m = \frac{-2 - 6}{5 - 3}$$

$$M = \frac{-8}{2}$$

$$M = \frac{4}{1}$$

 $m = \frac{-2 - 6}{5 - 3} \qquad \overrightarrow{AB} \perp \overrightarrow{CD}$

Example 9 Given P(-2,2), Q(2,1), R(1,-1), and S(5,-2), determine if PQ is parallel or perpendicular to RS.

PR $m = \frac{y_2 - y_1}{x_2 - x_1}$

$$M = \frac{1-2}{2+2}$$

$$m = \frac{-1}{4}$$

 $m = \frac{y_2 - y_1}{y_2 - y_1}$

$$m = \frac{-2+1}{5-1}$$

$$m = \frac{-1}{4}$$

$$m = \frac{-2+1}{5-1} \quad \overrightarrow{PQ} \parallel \overrightarrow{RS}$$

Graph the line through the point (-5,-4)

with a slope of 3.

$$m = \frac{3}{1} rise$$

Example 11

Graph the line through the point (-3,2)

with a slope of $-\frac{3}{4}$.

Line k passes through (0,3) and (5,2). Graph the line perpendicular to k that passes through (1,2).

m= =

opp. rec. slope
$$m_{\perp} = \frac{5}{1}$$
 or 5

Example 13

Line m passes through (-2,4) and (-5,1). Graph the line parallel to m that passes through (0,2).

m=1

Same slope
$$m_{ij} = 1$$

opp. rec. slopes

Find the value of x so the line that passes through (x,5) and (6,-1) is perpendicular to the line that passes through (2,3) and (-3,-7).

$$\frac{-1-5}{6-x} = \frac{-1}{2}$$

$$\frac{-6 \cdot 2}{6-x^{2}} = \frac{-1 \cdot (6-x)}{2}$$

$$-6 \cdot 2 = -1 \cdot (6-x)$$

$$-12 = -6 + x$$

$$+6 + 6$$

$$-6 = x$$

$$m = \frac{-7 - 3}{-3 - 2}$$

$$m = \frac{-10}{-5}$$

$$m = 2$$

$$m_{\perp} = -\frac{1}{2}$$

Example 15

Find the value of x so the line that passes through (x,2) and (3,5) is perpendicular to the line that passes through (0,1) and (2,7).

$$\frac{5-2}{3-x} = \frac{-1}{3}$$

$$m = \frac{7-1}{2-0}$$

$$m = \frac{6}{2}$$

$$m = 3$$

$$3 \cdot 3 = -1(3-x)$$

$$m_1 = -\frac{1}{3}$$

$$0 = -3+x$$

$$+3$$

$$12=x$$