2.3 Solving Two-Step Equations

Undo the operations in reverse order... in other words, work backwards.

- Combine like terms, if possible.
- Undo addition/subtraction.
- Undo multiplication/division.

Solve.

$$
\text { 1. } \begin{aligned}
\frac{x}{4}+9 & =6 \\
-9 & -9 \\
\hline \frac{x}{4} & =-3 \cdot 4 \\
x & =-12
\end{aligned}
$$

$$
\text { 2. } \begin{aligned}
-3 y-7 / & =-13 \\
+/ 7 & +7 \\
\hline \frac{-3 y}{-3} & =\frac{-6}{-3} \\
y & =2
\end{aligned}
$$

Solve.

4.

$-5++8-3 d$
-8
$-8 d$
$\frac{-13}{-3}=\frac{-3 \cdot d}{-3}$
$\frac{13}{3}=d$

Solve.

6. $\begin{aligned} & 2 \cdot-25=\frac{(3 w+1)}{2} \cdot \pi \\ &-50=3 w+1 \\ & \frac{-1}{-51}=\frac{3 \cdot w}{3} \\ & \frac{3}{3} \\ &-17=w\end{aligned}$

Solve.

$$
\text { 7. } \begin{aligned}
\begin{aligned}
& \text { Like } \\
& \text { terms } \\
& 8 y+3 y=44 \\
& \frac{11 y}{11}=\frac{44}{11} \\
& y=4
\end{aligned}
\end{aligned}
$$

9. The output of a function equals 5 more than- 2 times the input. Find the input when the output is 11 .

$$
\begin{array}{r}
y=-2 x+5 \\
11=-2 x+5 \\
-5
\end{array} \quad-5 \begin{aligned}
& -5 \\
& \hline \frac{6}{-2}=\frac{-2 x}{-2} \\
& -3=x
\end{aligned}
$$

10. The output of a function equals $4{ }^{4} 4$ less tindal 4 times the input. Find the input when the outplytis 3 .

$$
\begin{array}{r}
y=4 x-4 \\
3=4 x-4 \\
+4 \\
\hline \frac{7}{4}=\frac{4 x}{4} \\
\hline \text { or } \frac{7}{4}=x
\end{array}
$$

11. Define a variable, write an equation, \& solve.

Karen has 6 more $6 \quad$ molt by 2 newspaper customers as when she started selling newspapers. She now has 98 customers.

How many did she have when she started?
Let $x=$ \# of customers she had

46 customers
12. Define a variable, write an equation, \& solve.

A skate park charges $\$ 7$ per session to skate and $\$ 4$ per session to rent safety equipment. Jared rents safety equipment every time he skates. During the summer, he spends $\$ 99$ for skating charges and equipment rentals. How many times did he pay to skate at the park?
Let $x=\#$ of visits to skate park

