1.6 Angle Pair Relationships

Special Types of Angles

<table>
<thead>
<tr>
<th>Special Types of Angles</th>
<th>Definition</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>adjacent angles</td>
<td>angles in the same plane that have a common vertex and a common side, but no common interior points</td>
<td>(\angle 3 , \angle 4), (\angle 1 , \angle 2)</td>
</tr>
<tr>
<td>vertical angles</td>
<td>two nonadjacent angles formed by two intersecting lines</td>
<td>(\angle 2 , \angle 4), (\angle 1 , \angle 3)</td>
</tr>
<tr>
<td>linear pair</td>
<td>adjacent angles whose noncommon sides are opposite rays</td>
<td>(\angle 1 , \angle 2), (\angle 3 , \angle 4), (\angle 2 , \angle 3), (\angle 1 , \angle 4)</td>
</tr>
</tbody>
</table>
Example 1

a) Identify all linear pairs in the figure.

\[\angle 1 \text{ } \& \text{ } \angle 5 \]
\[\angle 5 \text{ } \& \text{ } \angle 4 \]

b) Identify all pairs of vertical angles in the figure.

\[\angle 1 \text{ } \& \text{ } \angle 4 \]

Example 2

a) Identify all linear pairs in the figure.

\[\angle 1 \text{ } \& \text{ } \angle 2 \]
\[\angle 2 \text{ } \& \text{ } \angle 3 \]

b) Identify all pairs of vertical angles in the figure.

\[\angle 1 \text{ } \& \text{ } \angle 3 \]
Vertical angles are **congruent**.

The sum of the measures of the angles in a linear pair is 180.

Example 3
Use the figure to the right to fill in the blanks.

a) If \(\angle 2 = 40^\circ \), then \(\angle 4 = \) \(40^\circ \).

b) If \(\angle 1 = 105^\circ \), then \(\angle 2 = \) \(75^\circ \).

c) If \(\angle 3 = 97^\circ \), then \(\angle 1 = \) \(97^\circ \).

d) If \(\angle 4 = 62^\circ \), then \(\angle 3 = \) \(118^\circ \).

Example 4
In the figure, \(\overline{GH} \) and \(\overline{JK} \) intersect at \(M \). Find the value of \(x \) and the measure of \(\angle JMH \).

\[
\begin{align*}
16x - 20 &= 13x + 7 \\
3x - 20 &= 7 \\
\sqrt{3}x &= 27 \\
\sqrt{3} &= 3 \\
x &= 9
\end{align*}
\]

\[m\angle JMH = 180 - 124 \]
\[m\angle JMH = 56^\circ\]
Example 5
Suppose \(m \angle GMJ = 9x - 4 \) and \(m \angle MH = 4x - 11 \). Find the value of \(x \) and \(m \angle KMH \).

\[
\begin{align*}
9x - 4 + 4x - 11 &= 180 \\
13x - 15 &= 180 \\
13x &= 195 \\
x &= 15
\end{align*}
\]

Two angles whose measures have a sum of 180 are called **supplementary** angles. If the sum of their measures is 90, they are called **complementary** angles.

Since we have learned that the sum of the measures of a linear pair is 180, we can now say that any two angles that form a linear pair must be supplementary angles.
Example 6
a) Name a pair of complementary angles.
\(\angle CAB \ & \ & \angle RST \)
b) Name a pair of supplementary angles.
\(\angle CAD \ & \ & \angle RST \)
c) Name a pair of adjacent angles.
\(\angle CAB \ & \ & \angle DAC \)

Example 7
a) Given that \(\angle 1 \) is a complement of \(\angle 2 \) and \(m\angle 1 = 62^\circ \), find \(m\angle 2 \).
\[m\angle 2 = 28^\circ \]

b) Given that \(\angle 3 \) is a supplement of \(\angle 4 \) and \(m\angle 4 = 114^\circ \), find \(m\angle 3 \).
\[m\angle 3 = 66^\circ \]
Example 8
\(\angle LMN \) and \(\angle PQR \) are complementary angles. Find the measures of the angles if \(m \angle LMN = (4x - 2) \) and \(m \angle PQR = (9x + 1) \)°.

\[
(4x - 2) + (9x + 1) = 90 \\
13x - 1 = 90 \\
13x = 91 \\
x = 7
\]

\(m \angle LMN = 4(7) - 2 = 26 \)°

\(m \angle PQR = 9(7) + 1 = 64 \)°

Example 9
Two angles form a linear pair. The measure of one angle is 5 times the measure of the other. Find the measure of each angle.

\[
180 = 5x + x \\
180 = 6x \\
30 = x
\]

\(30° \) & \(150° \)
Example 10
Two angles are complementary. One angle is six less than twice the other angle. Find the measure of each angle.

\[
\text{angle 1} \quad + \quad \text{angle 2} = 90
\]
\[
2x - 6 \quad + \quad x = 90
\]
\[
3x - 6 = 90
\]
\[
3x = 96
\]
\[
x = 32
\]

[32° & 58°]