2.1 USE INDUCTIVE REASONING

Sketch the figure you expect to see next in the pattern.

Describe in words the pattern of the numbers below & predict the next number.

The first three objects in a pattern are shown. How many square are in the next object?

The first three objects in a pattern are shown. How many square are in the next object?

Reasoning in geometry consists of three stages:

- 1. Look for a Pattern
- 2. Make a Conjecture
- 3. Verify the Conjecture

<u>conjecture</u> - an unproven statement that is based on patterns or observations

Given the pattern of triangles below, make a conjecture about the number of segments in a similar diagram with 5 triangles.

16.

4 15

9

5 ∆'5

11 segments

17. Make and test a conjecture about the sum of any three consecutive integers.

The sum of any three consecutive integers is a multiple of three
$$1+2+3=6$$
 $2+3+4=9$
 $3+4+5=12$
 $12+13+14=39$

inductive reasoning the process of looking for patterns and making conjectures

counterexample any example that shows a conjecture is false

Example: Conjecture- All odd numbers are divisible by 3.

Can you think of an odd number that isn't divisible by 3?

18. Find a counterexample to prove the conjecture is false.

Conjecture: The sum of two numbers is always greater than the larger of the two numbers.

$$-12 + 20 = 8$$

19. Find a counterexample to prove the conjecture is false.

Conjecture: All shapes with four sides are rectangles.

CHALLENGE

Conjecture: The sum of the first n odd positive integers is $\sqrt{2}$.