1.5
 DESCRIBE
 ANGLE PAIR RELATIONSHIPS

Special Types of Angles	Definition	Example
adjacent angles	angles in the same plane that have a common vertex and a common side, but no common interior points	$\begin{array}{\|l\|l\|} \hline 1 & \&<2 \\ <3 & 2<4 \\ <2 & 8<3 \\ <1 & 8<4 \\ \hline \end{array}$
vertical angles	two nonadjacent angles formed by two intersecting lines	$\begin{aligned} & \angle 1 \&<3 \\ & \angle 2 \& \angle 4 \end{aligned}$
$\frac{\text { linear }}{\text { pair }}$	adjacent angles whose noncommon sides are opposite rays	$\angle 1 \&<2$ $\angle 2.8<3$

Example 1

a) Identify all linear pairs in the figure.

$$
\angle 5 \&<1<5 \&<4
$$

b) Identify all pairs of vertical angles in the figure.

$$
\angle 1 \& \angle 4 \quad \begin{aligned}
& \text { not side-by-side } \\
& \text { formed by } 2 \text { intersecting lines }
\end{aligned}
$$

Example 2

a) Identify all linear pairs in the figure.

$$
\angle 2 \& \angle 3 \quad \angle 2 \&<1
$$

b) Identify all pairs of vertical angles in the figure.

$$
\angle 1 \& \angle 3
$$

Vertical angles are congruent.
The sum of the measures of the angles in a linear pair is 180.
$(13 x+7)+m \angle J M H=180$
Example 3 In the figure, $\overleftrightarrow{\mathrm{GH}}$ and $J \overleftrightarrow{\mathrm{~K} \text { intersect at } M \text {. Find the value of } x}$ and the measure of $\triangle \mathrm{MH}$.

Example 4
Suppose $m \angle C M J=9 x-4$ and $m \quad\lfloor\measuredangle H H=4 x-11$.
Find the value of x and $m \quad \measuredangle M H$.

Two angles whose measures have a sum of 180 are called supplementary angles. If the sum of their measures is 90 , they are called complementary angles.

Since we have learned that the sum of the measures of a linear pair is 180 , we can now say that any two angles that form a linear pair must be supplementary angles.

Example 5

a) Name a pair of complementary angles.

$$
\angle R S T \quad \& \quad \angle B A C \quad 58+32=90^{\circ}
$$

b) Name a pair of supplementary angles.

$$
\angle R S T{ }^{2} \&^{\angle 3} \angle D A C
$$

$$
58+122=180^{\circ}
$$

c) Name a pair of adjacent angles.

Example 6
a) Given that Δ is a complement of $\underline{2 L}$ and $m \angle 1=62^{\circ}$, find $m \angle$

$$
\begin{aligned}
& \sum_{62} 1+m \angle 2 \Longrightarrow \text { complementary } \\
& =90
\end{aligned}
$$

$$
m \angle 2=28^{\circ}
$$

b) Given that $\angle 3$ is a supplement of $4 \angle$ and $m \angle 4=114$, find $m \angle Z$

$$
\begin{gathered}
\angle 3 \& \angle 4 \rightarrow \text { supplementary } \angle 5 \\
\angle 3+\angle 4=180 \\
m \angle 3+114^{\circ}=180^{\circ} \\
m \angle 3=66^{\circ}
\end{gathered}
$$

Example 7
$\angle L M N$ and $\angle P Q R$ are complementary angles. Find the measures of the angles if $m \quad L X N N=(4 x-2)$ and

$$
\begin{aligned}
& m \angle P Q R=(9 x+1) \dot{0} \\
&(4 x-2)+(9 x+1)=90 \\
& 13 x-1=90 \\
& \hline \frac{13 x}{13}=\frac{91}{13} \\
& x=7
\end{aligned}
$$

$$
\begin{aligned}
& m \angle L M N=4(7)-2=26^{\circ} \\
& m \angle P Q R=9(7)+1=64^{\circ}
\end{aligned}
$$

Example 8
Two angles form a linear pair. The measure of one angle is 5 times the measure of the other. Find the measure of each angle.

$$
\begin{aligned}
\angle 1+\angle 2 & =180 \\
x+5 x & =180 \\
6 x & =180 \\
x & =30
\end{aligned}
$$

Example 9
Two angles are complementary. One angle is six less than twice the other angle. Find the measure of each angle.

$$
\begin{aligned}
\angle 1+\begin{aligned}
<1 & =90 \\
x+(2 x-6) & =90 \\
3 x-6 & =90 \\
+6 & +6 \\
\frac{3 x}{3} & =\frac{96}{3} \\
x & =32
\end{aligned} \\
\left.\hline 32^{\circ} \& 58^{\circ}\right]
\end{aligned}
$$

