1.5 DESCRIBE ANGLE PAIR RELATIONSHIPS

Special Types of Angles	Definition	Example
adjacent angles	angles in the same plane that have a common vertex and a common side, but no common interior points	21 & 22 23 & 24 22 & 23 21 & 24
vertical angles	two nonadjacent angles formed by two intersecting lines	<1 & L3 <2 & L4
linear pair	adjacent angles whose noncommon sides are opposite rays	L1822 L2823

2

4

3

L1&L4

1.5 Describe Angle Pair Relationships (work).notebook

Two angles whose measures have a sum of 180 are called <u>supplementary</u> angles. If the sum of their measures is 90, they are called <u>complementary</u> angles.

Since we have learned that the sum of the measures of a linear pair is 180, we can now say that any two angles that form a linear pair must be supplementary angles .

1.5 Describe Angle Pair Relationships (work).notebook

Example 6
a) Given that
$$\triangle$$
 is a complement of $2\angle$
and $m\angle 1 = 62^{\circ}$, find $m \angle 2$.
 $equal 4 = 62^{\circ}$, find $m \angle 2$.
 $equal 4 = 62^{\circ}$, find $m \angle 2$.
 $equal 4 = 62^{\circ}$, find $m \angle 2$.
 $equal 4 = 62^{\circ}$, find $m \angle 2$.
 $equal 4 = 62^{\circ}$, find $m \angle 2$.
 $equal 4 = 62^{\circ}$.
b) Given that $\angle 3$ is a supplement of $4\angle$
and $m\angle 4 = 114^{\circ}$, find $m \angle 2$.
 $equal 4 = 128^{\circ}$.
 $equa 4 = 128^{\circ}$.
 e

Example 7 $\angle LMN$ and $\angle PQR$ are complementary angles. Find the measures of the angles if m $\angle LMN = (4x - 2)$ and $m \angle PQR = (9x + 1)$. (4x-2) + (9x+1) = 90 13x - 1 = 90 +1 + 11 13x = 91 13 - 13 x = 7 $m \angle LMN = 4(7) - 2 = 26^{\circ}$ $m \angle PQR = 9(7) + 1 = 64^{\circ}$

Example 8 Two angles form a linear pair. The measure of one angle is 5 times the measure of the other. Find the measure of each angle. 21 + 22 = 180 x + 5x = 180 6x = 180 x = 30 $30^{\circ} \& 150^{\circ}$

Example 9

Two angles are complementary. One angle is six less than twice the other angle. Find the measure of each angle.