8.4 Greatest Common Factor & The Zero-Product Property

When two or more numbers are multiplied, each number is a factor of the product.

Numbers that have only two factors, 1 and itself, are called prime numbers. They are whole numbers that are greater than 1.

Example 2: Name the first ten prime numbers.

Whole numbers greater than 1 that are not prime are composite.

When a whole number is expressed as a product of factors that are all prime, the expression is called the prime factorization of the number.

8.4 Greatest Common Factor and The Zero Product Property (work).notebook April 18, 2024

The greatest common factor (GCF) of two or more monomials is the product of their common factors.

Factoring Using the Distributive Property

Earlier in Chapter 8 we learned to use the distributive property to multiply a monomial and a polynomial.

Now we will work backwards to put polynomials in factored form.

Example 5: Use the distributive property to factor $10y^2 + 15y$.

$$5y(2y+3)$$
2 10 3 5
5

Factored

Form

 $5y(2y+3)$
 $5y(2y+3)$

Example 6: Use the distributive property to factor $18x^2 - 12x^3$.

3 18 3 12 2 6 2 4 3 2 3 2

Example 7: Factor $16fg^2 - 24g^2h + 40g^2$.

$$8g^{2}(2f-3h+5)$$

Example 8: Factor $6k^3m + 14k^2m^2 - 4k^3m^3$.

Solving Equations by Factoring

Zero Product Property

For all numbers a and b, if ab = 0, then a = 0, b = 0, or both a and b equal 0.

Example 9: Solve (y + 2)(3y + 5) = 0. Then check each solution.

$$y+2=0$$
 $-/2$
 -2
 $y=-2$

$$3y + 5 = 0$$
 $3y = -5$
 $3y = -5$
 $y = -5$

Example 10: Solve (2a + 4)(a - 9) = 0.

Example 11: Solve
$$k^2 - 11k = 0$$
. factored form

 $k \cdot k$
 $k \cdot k$

Example 12: Solve
$$-10n^2 = 35n$$
.
 $+ 10n^2 + 10n^2$

$$0 = 35n + 10n^2$$

$$0 = 5n(7 + 2n)$$

$$5n = 0$$

$$5n = 0$$

$$7 + 2n = 0$$

$$5n = 0$$

$$7 + 2n = 0$$

$$2n = -7$$

$$2n = -7$$

$$1 = 0$$

Example 13: Solve
$$4y^2 = 10y$$
.

 $0 = 10y - 4y^2$
 $0 = 2y (5 - 2y)$
 $2y = 0$
 $2y = -5$
 $y = 0$
 $y = 5$
 $y = 5$
 $y = 5$

Example 14: Find the zeros of the function $f(x) = -2x^2 + x$.

 $0 = -2x^2 + x$
 $0 = x(-2x + 1)$
 $60x = x$

Vertical Motion Model

The height h (in feet) of a projectile can be modeled by $h = -16t^2 + vt + s$

where t is the time (in seconds) the object has been in the air, v is the initial velocity (in feet per second), and s is the initial height (in feet).

Example 15: A startled armadillo jumps straight into the air with an initial velocity of 14 feet per second. After how many seconds does it land on the ground? h=0 (end on ground)

$$0 = -16t^{2} + 14t + 0$$

$$0 = -16t^{2} + 14t$$

$$0 = 2t(-8t + 7)$$

$$\frac{2t = 0}{2} - 8t + \frac{7}{2} = 0$$

$$\frac{2t = 0}{2} - 8t + \frac{7}{2} = 0$$

$$\frac{2t = 0}{2} - 8t + \frac{7}{2} = 0$$

$$\frac{2t = 0}{2} - 8t + \frac{7}{2} = 0$$

$$\frac{2t = 0}{2} - 8t + \frac{7}{2} = 0$$

$$\frac{2t = 0}{2} - 8t + \frac{7}{2} = 0$$

$$\frac{2t = 0}{2} - 8t + \frac{7}{2} = 0$$

$$\frac{2t = 0}{2} - 8t + \frac{7}{2} = 0$$

$$\frac{2t = 0}{2} - 8t + \frac{7}{2} = 0$$

$$\frac{2t = 0}{2} - 8t + \frac{7}{2} = 0$$

$$\frac{2t = 0}{2} - 8t + \frac{7}{2} = 0$$

$$\frac{2t = 0}{2} - 8t + \frac{7}{2} = 0$$

$$\frac{2t = 0}{2} - 8t + \frac{7}{2} = 0$$

$$\frac{2t = 0}{2} - 8t + \frac{7}{2} = 0$$

$$\frac{2t = 0}{2} - 8t + \frac{7}{2} = 0$$

$$\frac{2t = 0}{2} - 8t + \frac{7}{2} = 0$$

$$\frac{2t = 0}{2} - 8t + \frac{7}{2} = 0$$

$$\frac{2t = 0}{2} - 8t + \frac{7}{2} = 0$$

$$\frac{2t = 0}{2} - 8t + \frac{7}{2} = 0$$

$$\frac{2t = 0}{2} - 8t + \frac{7}{2} = 0$$

$$\frac{2t = 0}{2} - 8t + \frac{7}{2} = 0$$

$$\frac{2t = 0}{2} - 8t + \frac{7}{2} = 0$$

$$\frac{2t = 0}{2} - 8t + \frac{7}{2} = 0$$

$$\frac{2t = 0}{2} - 8t + \frac{7}{2} = 0$$

$$\frac{2t = 0}{2} - 8t + \frac{7}{2} = 0$$

$$\frac{2t = 0}{2} - 8t + \frac{7}{2} = 0$$

$$\frac{2t = 0}{2} - 8t + \frac{7}{2} = 0$$

Example 16: A fountain sprays water into the air with an initial velocity of 20 feet per second. V=20 S=0

a) What is the height of the water after half a second?

h=? when
$$t = \frac{1}{2}$$

h= -16 t^2 + 20 t^2
h= -16 t^2 + 20 t^2
h= 6 feet

b) When will the water land on the ground?

$$t = ?$$
when $h = 0$

$$0 = -16t^{2} + 20t$$

$$0 = 4t(-4t + 5)$$

$$t = -5$$

$$t = -5$$

$$t = -5$$