11.1 Circumference & Arc Length

Circumference of a Circle: $C = 2\pi r$

Example 1

Find the circumference of $\odot P$.

$$C = 2\pi \cdot 12$$

$$C = 24\pi \text{ in}$$

$$C \approx 75.4 \text{ in}$$

Example 2

Find the radius of ⊙K.

Example 3

Find the diameter of ⊙T.

The arc length of a circle is a portion of the circumference of a circle.

Arc Length Corollary

The ratio of the length of an arc to the circumference of the circle is equal to the ratio of the measure of the arc to 360°.

whole discumsors
$$\frac{1}{2\pi r} = \frac{mAB}{360^{\circ}}$$
 hele ville

Example 4

Find the length of the arc shown below.

$$\frac{S}{2\pi \cdot 4} = \frac{45 \cdot 45}{340 \cdot 45}$$

$$\frac{S}{9\pi} = \frac{1}{8}$$

$$\frac{8S}{8} = \frac{9\pi}{8}$$

$$S = \pi \text{ units}$$

Example 5

Find the length of the arc shown below.

Example 6

Find the length of the arc shown below.

$$\frac{S}{2\pi \cdot 7} = \frac{190}{360}$$

$$\frac{S}{14\pi} = \frac{19}{36}$$

$$\frac{36S}{36} = \frac{266\pi}{36\pi}$$

$$S = \frac{133\pi}{18} \text{ units}$$

Example 7

Find the area of the sector shown below.

$$\frac{S}{2\pi \cdot 11} = \frac{270}{360}$$

$$\frac{S}{22\pi} = \frac{3}{4}$$

$$\frac{4}{4} = \frac{66\pi}{4}$$

$$S = \frac{33\pi}{4} \text{ units}$$

$$S = \frac{33\pi}{2} \text{ units}$$

EQUATIONS OF CIRCLES: $x^2 + y^2 = r^2$

Example 8

The equations of circles are given below. Find their circumference in terms of $\pi \leftarrow leq \nu e$

a)
$$x^2 + y^2 = 49$$

 $x^2 + y^2 = (7)^2$

$$C=2\pi \cdot 7$$
 $C=14\pi \text{ units}$

b)
$$x^2 + y^2 = 18$$
 answer $r = \sqrt{18}$ $2 \frac{18}{9}$ $r = 3\sqrt{2}$

$$C = 6\pi\sqrt{2} \text{ Units}$$