

TPMITHWOULD GROW UP AND SOUELISOWNPROBLEMS

A square has an unknown side length of x. A rectangle has a side length that is four feet longer than the square and a width that is two feet shorter than the square. The areas of both the square and the rectangle are equal. Find the side length of the square.

$$
\begin{aligned}
& \begin{array}{c}
\text { Side length } \\
\text { of square }=4 \mathrm{ft}
\end{array} \\
& x \cdot x=(x+4)(x-2) \\
& x^{2}=x^{2}-2 x+4 x-8 \\
& x^{2}=x^{2}+2 x-8 \\
& \hline 0=2 x-8
\end{aligned}
$$

The length of a rectangle is 2 cm greater than the width. If the width is increased by 3 cm , and the length is increased by 4 cm , the area is increased by $88 \mathrm{~cm}^{2}$. Find the original dimensions of the rectangle.

10 cm by 12 cm

$$
\begin{aligned}
& \text { Area }_{\text {anginal }}+88=\text { Area }_{\text {hew }} \\
& \text { Fol } \\
& x(x+2)+88=(x+3)(x+61 \\
& x^{2}+2 x+88=x^{2}+6 x+3 x+18 \\
& x^{2} y+2 x+88=x x+9 x+18 \\
&-x^{2}+x^{2} \\
& \hline 2 x+88=9 x+18 \\
& \frac{-18}{2 x+70}=9 x \\
&-2 x \\
& \frac{-2 x}{70}=\frac{7 x}{7} \\
& 10=y
\end{aligned}
$$

Dr. Walters has an office space that is in the shape of a square. The length of each wall is 12 feet. She wants to move to a larger office that is also in the shape of a square. If each wall in the larger office is x feet longer than 12 feet, which of the following expresses the area of the larger office space?
A. $\left(x^{2}+12\right) f t$
C.
$\left(x^{2}+6 x+12\right) f t$
B. $\left(x^{2}+144\right) f t$
D.
$\left(x^{2}+24 x+144\right) f t$

x
Are: $a=L \times W$ Area $=(12+x)\left(12+x^{x}\right)$

To get a square photograph to fit into a square frame, Mrs.
Wingard had to trim a 1-inch strip from each side of the photo, as shown below. In all, she trimmed off 40 square grey inc. What were the original dimensions of the photograph?

$$
\text { Big square - small square = Grey } \begin{gathered}
\text { Area }
\end{gathered}
$$

$$
x \cdot x-\underbrace{(x-2)(x-2)}=40
$$

$$
x^{2}+\left(-x^{2}+4 x+4\right)=40
$$

$$
4 x-4=40
$$

$$
\frac{+4+4}{\frac{4 x}{4}}=\frac{44}{4}
$$

$$
x=11
$$

The figure below is made up of a square and a rectangle. What is the expression for the area of the mat border (the shaded region)?
A. $5 x^{2}+6 x+1$
C.
$9 x+7$
B. $5 x^{2}+2 x+1$
D. $10 x+8$

Area $_{\text {sq- }}+$ Area $_{\text {rect }}=$ Grey

$$
(2 x+1)^{2}+x(x+2)=\text { Grey }
$$

$$
4 x^{2}+4 x+1+x^{2}+2 x=\text { Grey }
$$

$$
5 x^{2}+6 x+1=\text { (-res }
$$

Dave designs a square flower garden that has the same area as a rectangular one. The length of the rectangular garden is 10 feet longer than the side of the square garden. The width of the rectangular garden is 5 feet shorter than the side of the square.

Find the length of the rectangular garden.

$$
\int x-5
$$

Area $_{\text {sq }}=$ Area $_{\text {rect }}$.

$$
x \cdot x=(x+10)(x-5)
$$

$$
x^{2}=x^{2}-5 x+10 x-50
$$

$$
\begin{aligned}
& x^{2}=x^{2}+5 x-50 \\
& -x^{2}=5 x-50 \\
& 0=5 x \\
& 50=5 x
\end{aligned}
$$

$$
10=x .
$$

A mat border inside a picture fram has the following dimensions. What is the expression for the area of the mat border (the shaded region)?
A. $40 w^{2}+4 w$
C.
$40 w^{2}-20 w$
B. $40 w^{2}-20 w-16$
D. $40 w^{2}+4 w-16$

