6.6 - 6.7 Real Zeros of Polynomials

Rational Root Theorem

If a polynomial has integer coefficients, then every rational zero has the form:

$$\pm \frac{p}{q} = \pm \frac{\text{factor of the constant}}{\text{factor of the leading coefficient}}$$

I. List All Possible Rational Zeros

EXAMPLES: leading constant

1.
$$f(x) = 1x^3 + 2x^2 - 5x + 6$$

p factors of constant term:
$$\pm 1$$
, ± 2 , ± 3 , ± 6

possible rational zeros:
$$\pm 1$$
, ± 2 , ± 3 , ± 6

2.
$$f(x) = 2x^{3} - x^{2} + 5x + 6$$

p: ± 1 , ± 2 , ± 3 , ± 6

q: ± 1 , ± 2

4: ± 1 , ± 2 , ± 3 , ± 6 , $\pm \frac{1}{2}$, $\pm \frac{3}{2}$

3. $f(x) = 6x^{4} + 35x^{3} + 35x^{2} - 55x - 21$

p: ± 1 , ± 3 , ± 7 , ± 21

q: ± 1 , ± 3 , ± 7 , ± 21 , $\pm \frac{3}{2}$, $\pm \frac{3}$

Fundamental Theorem of Algebra

A polynomial of degree n has exactly n roots (zeros) in the set of complex numbers.

Roots or zeros may be rational (integers or fractions), irrational (square roots), or imaginary (i).

II. Find ALL Zeros

STEPS:

- 1. List all possible roots.
- 2. Test each possibility until you find one zero.
- 3. Divide by the zero (using synthetic division) to get depressed polynomial.
- 4. Repeat steps 1 to 3 until the depressed polynomial is a quadratic.
- 5. Solve the quadratic by factoring, square roots, or the quadratic formula to get the last 2 zeros.

