6.1 Part 2

Arc - a piece of a circle

An arc subtends (is opposite from) the central angle.

In a circle of radius r, the length s of an arc that subtends a central angle of θ is:

arc length	central angle	
circumference	360 or 2π	

To find circumference of a circle, use $C = 2\pi r$

Example 1 Find the length of an arc of a circle with radius 10 meters that subtends a central angle of 30°. $C = 2\pi \mathcal{L}(\mathcal{O})$ 360 20TT = 600T 360s : 36D Example 2 A central angle θ in a circle with radius 4 meters is subtended by an arc of length 6 meters. Find the measure of θ in radians. C ··· 2Tr $C = 2\pi(4)$ C = SICSICO-STC

Area of a Circular Sector

area of sector	central angle
area of circle	360 or 2π

To find area of a circle, use $A = \pi c^2$

Example 3

Find the area of a sector of a circle with central angle 60° if the radius is 3 meters.

Δ	= 17 22
	-11.5
Δ	= OTT
	- 7 1

Suppose a point moves along a circle. There are 2 ways to describe the motion of the point: linear speed and angular speed.

Linear speed: the rate at which the distance traveled is changing, so linear speed is the distance traveled divided by the time elapsed.

Linear speed:
$$v = \frac{s}{t} + \frac{linear}{time}$$

Angular speed: the rate at which the central angle is changing, so angular speed is the number of radians this angle changes divided by the time elapsed.

Angular speed:
$$\omega = \frac{\theta}{t}$$
 angle time

Example 4

A boy rotates a stone in a <u>3-foot-long</u> sling at a rate of 15 revolutions every 10 seconds. Find the angular and linear velocities of the stone.

$$\frac{\text{linear speed}}{\text{l revolution}} = 2\pi \tau$$

$$\frac{1}{1 \text{ revolution}} = 2\pi \tau$$

$$\frac{1}{1 \text{ rev}} = 6\pi$$

$$\frac{1}{1 \text{ rev}} = 15 \cdot 6\pi \tau = 90\pi \tau \leftarrow s \text{ (linear dist)}$$

$$\sqrt{1 + \frac{1}{2}} = \frac{90\pi \tau}{10 \text{ sec}} = 9\pi \tau + \frac{1}{2} \text{ sec} = \sqrt{1 + \frac{1}{2}}$$

$$\frac{1}{10 \text{ sec}} = 9\pi \tau + \frac{1}{2} \text{ sec} = \sqrt{1 + \frac{1}{2}}$$

$$\frac{1}{10 \text{ sec}} = 15 \cdot 2\pi \tau = 30\pi \tau$$

$$W = \frac{1}{10} = \frac{30\pi \tau}{10 \text{ sec}} = 3\pi \tau \text{ rad}(\text{sec} = W)$$

Can we write a formula that allows us to find linear speed based on the angular speed?

Use
$$\frac{\operatorname{arc \ length}}{\operatorname{circumference}} = \frac{\operatorname{central \ angle}}{360 \text{ or } 2\pi}$$
 to solve for s .

therefore $v = \frac{v}{t}$ AND $\omega = \frac{2}{t}$

Thus, we have the formula $\mathcal{V} = \mathcal{V} \mathcal{W}$

Example 5 A woman is riding a bicycle whose wheels are 26 inches in diameter. If the wheels rotate at 125 revolutions per minute (rpm), find the speed at which she is traveling in $mi/h. \leftarrow linear$ speed $lrer=2\pi \cdot 13=26\pi$ $\gamma = \frac{3250\pi}{1} = \frac{3250\pi}{1}$ in l25 read = 3250\pi 3250π in lff linear speed $lrer=2\pi \cdot 13=26\pi$ $\gamma = \frac{3250\pi}{1} = \frac{3250\pi}{1}$ in l25 read = 3250\pi 3250π in lff linear speed $lrer=2\pi$ linear linea