6.1 Part 2

Arc - a piece of a circle

An arc subtends (is opposite from) the central angle.

In a circle of radius r, the length s of an arc that subtends a central angle of θ is:

$$
\frac{\text { arc length }}{\text { circumference }}=\frac{\text { central angle }}{360 \text { or } 2 \pi}
$$

To find circumference of a circle, use $C=2 \pi r$.

Example 1
Find the length of an arc of a circle with radius 10 meters that subtends a central angle of $30^{\circ} . \quad C=20 r$

$\frac{360 s}{360}=\frac{600 \pi}{36 \phi}$

$$
S=\frac{5 \pi}{3} m
$$

Example 2

A central angle θ in a circle with radius 4 meters is
 of θ in radians.

$$
\begin{gathered}
\frac{6}{8 \pi}=\frac{\theta}{2 \pi} \\
\frac{8 \pi \theta}{8 \pi}=\frac{12 \pi}{8 \pi} \\
\theta=\frac{3}{2} \mathrm{rad}
\end{gathered}
$$

$$
\begin{aligned}
& C=2 \pi r \\
& C=2 \pi(4) \\
& C=8 \pi
\end{aligned}
$$

Area of a Circular Sector
$\frac{\text { area of sector }}{\text { area of circle }}=\frac{\text { central angle }}{360 \text { or } 2 \pi}$

To find area of a circle, use \qquad .

Example 3

Find the area of a sector of a circle with central angle 60° if the radius is 3 meters.

$$
\frac{A}{9 \pi}=\frac{60}{360}
$$

$$
A=\pi \cdot 3^{2}
$$

$$
A=9 \pi
$$

$$
\begin{aligned}
\frac{360 A}{360} & =\frac{545 \pi}{360} \\
A & =\frac{3 \pi}{2} m^{2}
\end{aligned}
$$

Suppose a point moves along a circle.
There are 2 ways to describe the motion of the point: linear speed and angular speed.

Linear speed: the rate at which the distance traveled is changing, so linear speed is the distance traveled divided by the time elapsed.

Linear speed: $v=\frac{s}{t} \frac{\text { linnar }}{\text { dist }}$

Angular speed: the rate at which the central angle is changing, so angular speed is the number of radians this angle changes divided by the time elapsed.

Angular speed:

$$
\omega=\frac{\theta}{t} \frac{\text { angle }}{\text { time }}
$$

Example 4 radius
A boy rotates a stone in a 3 -foot-long sling at a rate of 15 revolutions every 10 seconds. Find the angular and linear velocities of the stone.

$$
\begin{aligned}
& \frac{\text { linear speed }}{1} \quad 3 \\
& 1 \text { revolution }=2 \pi r \\
& 1 \text { rev }=6 \pi \\
& 15 \mathrm{rev}=15 \cdot 6 \pi=90 \pi \\
& \quad v=\frac{s}{t}=\frac{90 \pi}{10 \sec }=9 \text { (linear dist.) } \\
& \qquad 9 \pi \mathrm{ft} / \mathrm{sec}=0
\end{aligned}
$$

angular speed

$$
\begin{aligned}
1 \mathrm{rev} & =2 \pi \\
15 \mathrm{rev} & =15 \cdot 2 \pi=30 \pi \\
\omega & =\frac{\theta}{t}=\frac{30 \pi}{10 \mathrm{sec}}=3 \pi \mathrm{rad} / \mathrm{sec}=\omega
\end{aligned}
$$

Can we write a formula that allows us to find linear speed based on the angular speed?

Use

$$
\begin{aligned}
& \frac{\text { arc length }}{\frac{\text { circumference }}{}=\frac{\text { central angle }}{3600 \text { r } 2 \pi}} \text { to solve for } s . \\
& \frac{s}{2 \pi r}=\frac{\theta}{2 \pi} \\
& \frac{2 \pi s}{2 \pi}=\frac{2 \pi t r}{2 \pi} \\
& v=\frac{s}{2}=r \theta \\
& \text { AND } s=r \theta
\end{aligned}
$$

therefore $\quad v=\frac{r \theta}{t}$ AND $\omega=\frac{\theta}{t}$

Thus, we have the formula \qquad $v=r w$

Example 5

$$
r=i 3 \mathrm{in}
$$

A woman is riding a bicycle whose wheels are 26 inches in. diameter. If the wheels rotate at 125 revolutions per minute (rpm), find the speed at which she is traveling in $\mathrm{mi} / \mathrm{h} . \longleftarrow$ linear speed

$$
\text { I } \mathrm{rev}=2 \pi \cdot 13 \Rightarrow 26 \pi
$$

$$
\begin{aligned}
& v=\frac{s}{t}=\frac{3250 \pi \mathrm{in}}{1 \mathrm{~min}} 125 \mathrm{rev}=3250 \pi \\
& \frac{3250 \pi \mathrm{~min}}{\min } \cdot \frac{18 t}{12 \mathrm{in}} \cdot \frac{1 \mathrm{mile}}{5280 \mathrm{ft}} \cdot \frac{60 \mathrm{~min}}{1 \mathrm{hr}}=\frac{195,000 \pi \mathrm{mile}}{63360 \mathrm{hr}} \approx
\end{aligned}
$$

9.7 miles $/ \mathrm{hr}$

