8.5 Proving Triangles are Similar

Theorem 8.2 : SSS Similarity (Side-Side-Side)

If the measures of the corresponding sides of two triangles are proportional, then the triangles are similar.

$$
\text { IF } \frac{A B}{X Y}=\frac{B C}{Y Z}=\frac{C A}{Z X} \rightarrow \text { THEN } \triangle A B C \sim \triangle X Y Z
$$

Example 1

Is either $\triangle P Q R$ or $\triangle S T U$ similar to $\triangle Y Z$?

Example 2

Find the value of x that makes $\triangle X Y Z \sim \mathbb{Q Q R}$.

$$
\begin{array}{r}
\frac{2}{3}=\frac{x+6}{21} \quad \begin{array}{r}
3(x+4)=42 \\
3 x+18=42 \\
-18-18
\end{array} \\
3 x=24 \\
1 \lambda=8
\end{array}
$$

Theorem 8.3: SAS Similarity (Side-Angle-Side)
If the measures of two sides of a triangle are proportional to the measures of two corresponding sides of another triangle and the included angles are congruent, then the triangles are similar.

If $\frac{\mathrm{FE}}{\mathrm{NM}}=\frac{\mathrm{FG}}{\mathrm{NO}}$
$\& \angle F \cong \angle N$

then $\triangle E F G \cong \triangle M N O$.

Example 3

In the figure below, $-\bar{G}=\overline{E G}, \mathrm{~B}=15, C F=20$, $A E=9$, and $D F=12$. Determine which triangles in
the figure $\frac{20}{15}$
5
$\frac{4}{3}$
\longrightarrow

SAS Sim.
 $\triangle A B E \sim \triangle D C F$

Example 4

Triangle STU has point X in its interior. If $Z X S$, $\angle S X U$, and $\angle T X U$ each measure 120 degrees, $S X=16, X U=4$, and $X T=8$, determine which triangles in the figure are similar. S

Example 5

Tell what method you would use to show that the triangles are similar. Write a similarity statement.

$$
\begin{aligned}
& \frac{32}{24} \\
& \frac{20}{15} \\
& \frac{4}{3}=\frac{16}{12} \\
& \frac{4}{3}=\frac{4}{3}
\end{aligned}
$$

Example 6
Tell what method you would use to show that the triangles are similar. Write a similarity statement.

Example 7

Tell what method you would use to show that the triangles are similar. Write a similarity statement.

Example 8

The side lengths of $\triangle A B C$ are 2,5 , and 6 , and $\triangle D E F$ has side lengths of 12,30 , and 36 . Find the ratios of the lengths of the corresponding sides of $\triangle A B C$ to $\triangle D E F$. Are the two triangles similar? Explain.

