6.1 Solving Systems of Equations by Graphing

The three above examples are called <u>consistent independent</u> systems because the lines are <u>distinct</u> (meaning independent) and <u>intersect</u> (meaning consistent).

Decide whether the ordered pair is a solution of the system of linear equations.

1.
$$-x + y = -2$$

 $2x + y = 10$ (-4, -2) $\leftarrow not = 0$
 $-x + y = -2$
 $+ -2 = -2$
 $2 \neq -2$

Decide whether the ordered pair is a solution of the system of linear equations.

2.
$$3x + y = 11$$

 $x - 2y = 6$ $(4, -1) \leftarrow \text{Solution}$
 $3x + y = 11$
 $3 \cdot 4 + -1 \stackrel{?}{=} 11$
 $12 + -1 \stackrel{?}{=} 11$
 $11 = 11\sqrt{4}$ $(4, -1) \leftarrow \text{Solution}$
 $x - 2y = 6$
 $4 - 2 \cdot -1 \stackrel{?}{=} 6$
 $4 + 2 \stackrel{?}{=} 6$
 $6 = 6\sqrt{4}$

Solve the system of equations by graphing.

9. The cost to join an art museum is \$60. If you are a member, you can take lessons at the museum for \$2 each. If you're not a member, lessons cost \$6 each. Which system of equations can be used to find the number x of lessons after which the total cost y of lessons with a membership is the same as the total cost of lessons without a membership?

A.
$$y = 2x$$

 $y = 6x$
B. $y = 60x + 2$
 $y = 6x$
C. $y = 2x + 60$
 $y = 6x + 60$
D. $y = 2x + 60$
 $y = 6x - 100$

Solve the system of equations by graphing.

10. The school is selling tickets for a fundraising event. The school sold 35 tickets for \$86 on the first day of the sale. Student tickets cost \$2 each and nonstudent tickets cost \$3 each. Find the number of student tickets and the number of non-student tickets the school sold on the first day.

x = student tickets y=non-student fickets

x + y = 35 ticket equation 2x + 3y = 86 money equation $(19,16) \rightarrow 19$ student tickets 16 non-student tickets