6.1 Part 1 Ratio and Proportion ratio- a comparison of two quantities

$$
\frac{2}{3} \quad 2: 3 \quad 2 \text { to } 3
$$

Example 1 change larger unit Simplify each ratio.
a) $\frac{6 \mathrm{in}}{2 \mathrm{ft} \leftarrow} \frac{6 \mathrm{in} \div 6}{24 \mathrm{ir} \div 6}$
b) $\frac{50 \mathrm{~cm}}{2 \mathrm{~m} \leftarrow} \quad \frac{50 \mathrm{~cm}}{200 \mathrm{cmn}} \div 50$

$$
\frac{1}{4}
$$

$$
\frac{1}{4}
$$

Example $2 \quad$ $\quad \mathrm{yd}=3 \mathrm{ft}$
Simplify each ratio.
a) $\frac{4 \mathrm{ft}}{3 \mathrm{yd}} \leftarrow \frac{4 \mathrm{ft}}{9 \mathrm{ft}}$
b) $\frac{2 \mathrm{~km}}{800 \mathrm{~m}} \leftarrow \frac{2060 \mathrm{gh} \div 4}{800 \mathrm{xn} \div 4}$

$$
\frac{4}{9}
$$

$$
\frac{5}{2}
$$

Example 3
The perimeter of rectangle $A B C D$ is 60 cm .
The ratio of $A B: B C$ is $3: 2$. Find the length
and width of the rectangle.

$$
3 x=3 \cdot 6=18
$$

$$
2 x=2.6=12 \mathrm{~cm} \quad 3 x: 2 x
$$

$$
3 x+2 x+3 x+2 x=60
$$

$$
\frac{10 x}{10}=\frac{60}{10}
$$

$$
x=6
$$

Example 4
The perimeter of the isosceles triangle shown is 56 in . The ratio of LM:MN is $5 \times: 4 \times \dot{x}$ Find the lengths of all sides of the triangle.

$$
\begin{aligned}
5 x+5 x+4 x & =56 \\
\frac{14 x}{14} & =\frac{56}{14} \\
x & =4
\end{aligned}
$$

Example 5
The ratio of the measures of the angles of a triangle are $1: 2: 3$. Find the measures of the angles.

$$
\begin{aligned}
1 x+2 x+3 x & =180 & & 1 x=30^{\circ} \\
\frac{6 x}{6} & =\frac{180}{6} & & 2 x=60^{\circ} \\
x & =30 & & 3 x=90^{\circ}
\end{aligned}
$$

Example 6
The ratio of the measures of the angles of a triangle are $3: 4: 8$. Find the measures of the angles. $3 x: 4 x: 8 x$

$$
\begin{aligned}
3 x+4 x+8 x & =180 & & 3 x \rightarrow 36^{\circ} \\
\frac{15 x}{15} & =\frac{180}{15} & & 4 x \rightarrow 48^{\circ} \\
x & =12 & & 8 x \rightarrow 96^{\circ}
\end{aligned}
$$

An equation that equates two ratios is a proportion.
To solve proportions, you will cross multiply.
Example 7
Solve each proportion.
a)

$$
\frac{9 x}{9}=\frac{84 \div 3}{9 \div 3}
$$

$$
x=\frac{28}{3}
$$

b)

$$
\begin{aligned}
& 3 x-2=\frac{2}{y} \\
& y+2=2(y+2) \\
& 3 y=2 y+4 \\
& \frac{-2 y-2 y}{y=4}
\end{aligned}
$$

Example 8
Solve each proportion.

$$
\begin{aligned}
& \text { a) } \begin{array}{l}
\frac{3-x}{6}=\frac{x}{2} \\
6 x=2(3-x) \\
6 x=6-2 x \\
+2 x=+2 x \\
\frac{8 x}{8}=\frac{6}{8} \\
x=\frac{3}{4}
\end{array} .
\end{aligned}
$$

b)

$$
\text { b) } \begin{aligned}
& \frac{4 w-1}{2 w-3}=\frac{2}{3} \\
& 3(4 w-1)=2(2 w-3) \\
& \frac{12 w-3}{}=4 w-6 \\
&-4 w-4 w \\
& \hline 8 w-8=-6 \\
&+3 \\
& \hline \frac{8 w}{8}=\frac{-3}{8} \\
& w=-\frac{3}{8}
\end{aligned}
$$

Example 9
A diagram measuring 20 cm long is reduced on a copy machine to 15 cm long. If the width of the original copy is 16 cm , what is the width of the reduced copy?

$$
\begin{aligned}
\frac{20}{15} & =\frac{16}{w} \\
\frac{15}{20} & =\frac{w}{16} \\
\frac{20 w}{20} & =\frac{240}{20} \\
W & =12 \mathrm{~cm}!
\end{aligned}
$$

Example 10
In a photograph taken from an airplane, a section of a city street is 3.5 inches long and $\frac{1}{8}$ of an inch wide. If the actual street is 30 feet wide, how long is it?

$$
\begin{array}{r}
l \frac{3.5}{\frac{1}{8}}=\frac{l}{30} \\
8 \cdot \frac{1}{8} l=105 \cdot 8 \\
l=840 \mathrm{ft}
\end{array}
$$

Example 11
Lee is reading a 374-page novel. It takes her 6 days to read the first 132 pages. At this rate, how many more days will it take her to finish the novel?

$$
\begin{gathered}
\frac{132 \text { pages }}{6 \text { days }}=\frac{242 \text { pages }}{x \text { days }} \\
\frac{132 x}{132}=\frac{1452}{132} \\
x=11 \text { days }
\end{gathered}
$$

Example 12
The ratio of an object's weight on Earth to its weight on the moon is 6:1. The first person to walk on the moon was Neil Armstrong. He weighted 165 pounds on Earth. What was his weight on the moon?

$$
\begin{aligned}
E & \frac{6}{1}
\end{aligned}=\frac{165}{x}, \begin{aligned}
\frac{6 x}{6} & =\frac{165}{6} \\
x & =27.51 b
\end{aligned}
$$

