Complete the table to investigate the growth of a \$1 investment that earns 100% annual interest over 1 year as the number of compounding periods per year, n, increases.

Compounding Schedule	n	$P(1+\frac{r}{n})^{nt}$	Value
annually			
semiannually			
quarterly			
monthly			
daily			
hourly			
every minute			
every second			

Complete the table to investigate the growth of a \$1 investment that earns 100% annual interest over 1 year as the number of compounding periods per year, n, increases.

Compounding Schedule	n	$P(1+\frac{r}{n})^{nt}$	Value
annually	1	$1(1+\frac{1}{1})^{1-1}$	2
semiannually	2	$1(1+\frac{1}{2})^{2\bullet 1}$	2.25
quarterly	4	$1(1+\frac{1}{4})^{4\bullet 1}$	2.44140625
monthly	12	$1(1+\frac{1}{12})^{12}$	2.61303529
daily	365	$1(1+\frac{1}{365})^{365 \cdot 1}$	2.714567482
hourly	8760		2.718126691
every minute	525600	$1(1+\frac{1}{525600})^{525600} \cdot 1$	2.718279215
every second	3153600	$1(1+\frac{1}{3153600})^{3153600}^{\bullet 1}$	2.718281227

6.6 Part 1 The Natural Exponential Function

Although any positive number can be used for the base, the most important base is the number denoted by e.

e is defined as the value that $(1 + \frac{1}{n})^n$ approaches as n becomes large (in calculus, this idea will be made more precise).

$$e \approx 2.71828182845904523536...$$

The natural exponential function is $f(x) = e^x$.

This is also often referred to as *the* exponential function.

Evaluate to five decimal places.

$$e^3 \approx 20.08554$$

$$e^{4.8} \approx 121.51042$$

Sketch the graph of the functions.
State the domain, range, and asymptote.

Sketch the graph of the functions.
State the domain, range, and asymptote.

Continuous Compound Interest

$$A(t) = Pe^{rt}$$

A(t) = the amount of \$ after t years

P = the amount of \$ invested or borrowed

e = e

r = the percent as a decimal

t = the number of years

Example

Find the amount of interest if \$1000 is invested at a rate of 12% per year, compounded continuously. for 5 years (12)(5)

$$A = 1000 e$$
 $A \approx $ 1822.12$

Example

A radioactive substance decays in such a way that the amount of mass remaining after t days is given by the function $m(t) = 13e^{-0.015t}$ where m(t) is measured in kg.

a) Find the mass at time t = 0 $m(0) = 13e^{-0.015}(0)$

$$m(0) = 13 \text{ kg}$$

b) How much of the mass remains after 45 days?

$$m(45) = 13e^{(-0.015)(45)} \approx 6.619 \text{ kg}$$