4.5 Write Equations of Parallel \& Perpendicular Lines

Remember: In the last chapter we learned that parallel lines have the same slope.
Example 1: Write $\begin{gathered}y=m x+b \\ \text { an equation }\end{gathered}$ of the line that passes through $(-8,5)$ and is parallel to the line $y=\frac{4}{4}-1 . \quad x_{1} y_{1}$

$$
\begin{aligned}
m=\frac{3}{4} \quad & y-y_{1}=m\left(x-x_{1}\right) \\
& y-5=\frac{3}{4}(x+8) \\
& y-\not y=\frac{3}{4} x+6 \\
& +5+5 \\
& y=\frac{3}{4} x+11
\end{aligned}
$$

Example 2: Write $y=m x+b$ equation of the line that passes through $(-3,1)$ and is parallel to the line $3 y^{\text {solve for }}-2 y^{\circ} 7$.

$$
\begin{gathered}
\frac{-3 x}{\frac{-2 y}{-2}}=\frac{-3 x}{-2 x}+\frac{7}{-2} \\
y=\frac{3}{2} x-\frac{7}{2} \\
m
\end{gathered}
$$

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-1=\frac{3}{2}(x+3) \\
& y-\gamma=\frac{3}{2} x+\frac{9}{2} \\
& +1 \\
& y=\frac{3}{2} x+\frac{11}{2}
\end{aligned}
$$

Two lines are perpendicular if they intersect to form a right angle.

$$
\begin{aligned}
& -\frac{2}{3} \& \frac{3}{2} \\
& \frac{4}{1} \&-\frac{1}{4}
\end{aligned}
$$

Perpendicular lines have slopes
 (or negative reciprocals).

Example 3: Determine which lines, if any, are parallel or perpendicular.
same slope opp. rear slopes
Line $a: 2 x /+6 y=-3$ Line $b: y=3 x-8$ Line $c:-1.5 x+4.5 y=6$

$$
\begin{array}{ccc}
\frac{-2 x}{} \frac{6 x}{6}=-\frac{2 x}{6}-\frac{3}{6} & m=\frac{3}{1} & \frac{+1.5 x}{}+4.5 x \\
y=-\frac{1}{3} x-\frac{1}{2} & a \& b & \frac{4.5 y}{4.5}=\frac{1.5 x+6}{4.5} \frac{6}{4.5} \\
m=-\frac{1}{3} & \text { are } & y=\frac{1}{3} x+\frac{4}{3} \\
& \text { perpendicular } & w_{1}=\frac{1}{3}
\end{array}
$$

Example 4: Write an equation of the line that passes through $(4,3)$ and is
perpendicular to the line $y=$ (4) -7 .

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-3 & =-\frac{1}{4}(x-4) \\
y-3 & =-\frac{1}{4} x+1 \\
+3 & +3 \\
y & =-\frac{1}{4} x+4
\end{aligned}
$$

Example 5: Write an equation of the line that passes through ($\mathbf{v}^{\prime}, 2^{2}$) and is
perpendicular to the line $y=-\frac{1}{2} x+4$.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-2=2(x-5) \\
y-y=2 x-10 \\
+/ 2=+2 \\
y=2 x-8
\end{gathered}
$$

Example 6: Write an equation of the line that passes through ($4_{1},-1$) and is perpendicular to the line 7 solve for y.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \quad \frac{7 x}{-7 x}-7 x \\
& y+1=-\frac{2}{7}(x-4) \\
& \frac{-24}{-2}=\frac{-7 x}{-2}+3 \\
& y=\frac{7}{2} x-\frac{3}{2} \\
& \begin{array}{r}
y+1=-\frac{2}{7} x+\frac{3}{7} \\
-1
\end{array} \\
& y=-\frac{2}{7} x+\frac{1}{7}
\end{aligned}
$$

Example 7: Write an equation of the line that passes through $(-2,2)$ and is perpendicular to the line $y=7$.

$$
x=-2
$$

horizontal
want vertical line
$x=\#$

