6.2 Exponential Functions

An exponential function has the variable as an exponent.

$$f(x) = a \cdot b^{x} exponent$$

b is any positive number other than 1

examples:
$$f(x) = 2^x$$
 or $f(x) = \left(\frac{1}{2}\right)^x$

Example 1

Example 1 growth

Make a table of values and graph $y = 4^x$.

Range: y>0

Example 2 decay
Make a table of values and graph $y = \left(\frac{1}{4}\right)^x$.

Domain: R

Range: y > 0

The exponential function is a growth function if the base is greater than 1.

The exponential function is a decay function if the base is between 0 and 1.

Example 3

Graph each function below. Identify the domain, range, & asympote.

Compound Interest Formula

$$A(t) = P(1 + \frac{r}{n})^{nt}$$

A(t) = the amount of \$ after t years
P = the amount of \$ invested or borrowed
r = percent as a decimal
t = the number of years

n = the number of times interest is compounded per year

n=1 annually
n=2 Semiannually
n=4 quarterly
n=12 monthly

Example 4 p=1000

r=12%= · 12

A sum of \$1000 is invested at an interest rate of 12% per year. Find the amounts in the account after 3 years if interest is compounded annually, semiannually, quarterly, and monthly.

$$A = 1000(1 + \frac{11}{4})$$
 $A \approx 1425.76

A \$1404.93

$$\frac{\text{monthly}}{A = 1000(1 + \frac{12}{12})}$$
 12.3

semiannually
$$A = 1000 \left(1 + \frac{.12}{2}\right)^{2.3}$$

$$A \approx $1414.52$$

Example 5

a) Find the final amount for an \$800 investment at 7% interest compounded quarterly for 10 years.

b) Find the final amount for a \$3000 investment at 4.25% interest compounded daily for 2 years.