4.6 Modeling with Exponential and Logarithmic Functions

Exponential functions - population growth, radioactive decay, heat diffusion, and others

Logarithmic functions - loudness of sounds, intensity of earthquakes, and other phenomena

Population

Biologists have observed that the population of a species doubles its size in a fixed period of time. For example, under ideal conditions a certain population of bacteria doubles in size every 3 hours. If the culture started with 1000 bacteria, then after 3 hours there will be 2000 bacteria, after another 3 hours there will be 4000 bacteria, and so on. If we let $n=n(t)$ be the number of bacteria after t hours, then

$$
\begin{aligned}
& n(0)=1000 \\
& n(3)=2000 \\
& n(6)=4000 \\
& n(9)=8000
\end{aligned}
$$

From this pattern it appears that the number of bacteria after t hours is modeled by the function

$$
n(t)=1000(2)^{\frac{t}{3}}
$$

Example 1: A specific type of animal was introduced in a rural region 26 years ago. Biologists observe that the population $\frac{\text { quadruples }}{\text { base }=4} \frac{\frac{t}{8}}{8}$ years, and now the population is $\frac{11,425}{n(26)}$
a) What was the initial population?

$a \approx 126$ animals
b) Find a function that models the number of bacteria after t hours.

$$
n(t)=126(4)^{\frac{t}{8}}
$$

c) Estimate the population 15 years from now.

$$
\begin{array}{cc}
n(41)=126(4)^{41 / 8} & n(15)=11425(4)^{i 5 / 8} \\
n(41) \approx 153,436 & n(15) \approx 153,716 \\
& \text { animals }
\end{array}
$$

Exponential Growth Model

$$
n(t)=n_{0} e^{r t}
$$

where $n(t)=$ population at time t

$$
n_{0}=\text { initial size of population }
$$

$r=$ relative rate of growth
(expressed as a proportion of
the population)
t = time

Example 2: The initial bacterium count in a culture is 50,5 . 0 . $)$ biologist later makes a sample count of bacteria in the culture and finds that the relative growth is 40% per hour. .40
a) Find a function that models the number bacteria after t hours. $n(t)=500 e^{.4 t}$
b) What is the estimated count after 10 hours? $n(10)=500 e$
$n(10) \approx 27,299$ people
c) Sketch the graph of the function $n(t)$.
$n(5) \approx 3695$

Example 3: In 2000 the population of the world was 6.1 billion and the relative rate of growth was 1.4% per year. It is claimed that a rate of 1.0% per year would make a significant difference in the total population in just a few decades. Test this claim by estimating the population of the world in the year $\underline{\frac{1}{2050}}=$ using a relative rate of growth of
a) 1.4% per year $=.014$
b) 1.0% per year $r=.01$

$$
(.014)(50)
$$

$$
n(50)=6.1 e
$$

$$
n(50)=6.10^{(.01)(50)}
$$

$$
n(50) \approx 10.057 \text { billion }
$$

Example 4: The population of the world in 2000 was 6.1 billion, and the estimated relative growth rate was 1.4% per year. If the population continues to grow at this rate, when will it reach 122 billion? $n(t) \quad$ Find t.

$$
\begin{aligned}
& \frac{122}{6.1}=\frac{6.1 e^{.014 t}}{6.1} \\
& \ln 20=\ln e^{.014 t} \\
& \frac{\ln 20}{.014}=\frac{.014 t}{.014} \\
& 214 \\
& \text { years }
\end{aligned}
$$

Example 5: A certain breed of rabbit was introduced onto a small island about 8 years ago. The current rabbit population on the island is estimated to be 4100 , with a relative growth rate of 55% per year. $h(8)$

$$
n(t)=n_{0} e^{r t}
$$

a) What was the initial size of the rabbit population?

$$
\frac{4100)}{e^{c .55(8)}} \frac{n_{0}}{(5) 8)} \quad n_{0} \approx 50 \text { rabbits }
$$

b) Estimate the population 12 years from now.

$$
\begin{array}{cl}
n(20)=50 e^{(.55)(20)} & n(12)=4100 e^{(.55)(12)} \\
n(20) \approx 2993,707 & n(12) \times 3,013,980 \\
\text { rabbits } & \text { rabbits }
\end{array}
$$

Example 6: A culture starts with 10,800 bacteria, and the number doubles every 40 minutes.
a) Find a function that models the number of bacteria at time t.
b) Find the number of bacteria after one hour. $n=60$
c) After how many minutes will there be 50,000 bacteria? $n(t)$
a) $n(t)=10,000(2)^{\frac{40}{40}}$
b) $n(60)=10,000(2)^{\frac{60}{10}}$
$n(60) \approx 28,284$ bacteria
c)

In 1935 the American geologist Charles Richter defined the magnitude \boldsymbol{M} of an earthquake to be

$$
M=\log \frac{I}{S}
$$

where \boldsymbol{I} is the intensity of the earthquake
and S is the intensity of a "standard" earthquake.

Example 7: The 1906 earthquake in San Francisco had an estimated magnitude of 8.3 on the Richter scale. In the same year a powerful earthquake occured on the Colombia-Ecuador border that was 4 times as intense. What was the magnitude of the Colombia-Ecuador earthquake on the Richter scale?

$$
\begin{aligned}
& M=\log \frac{4 T}{S} \\
& M=\log 4+\log \frac{T}{S} \\
& M=\log 4+8.3 \\
& M \approx 8.9
\end{aligned}
$$

