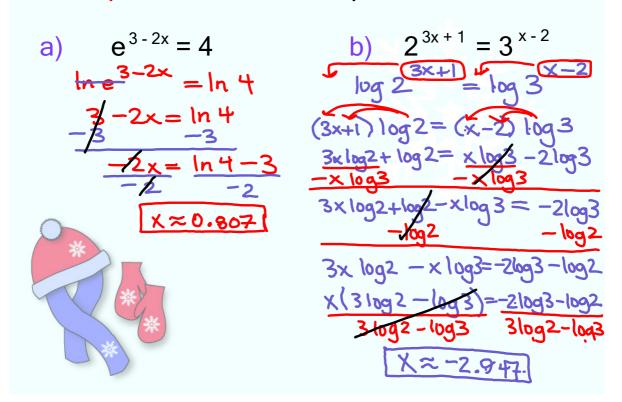
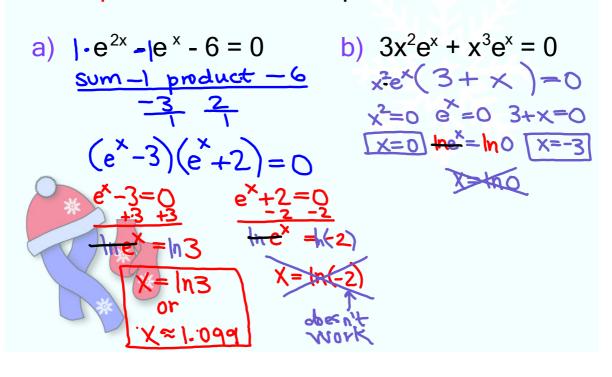

4.5 Exponential and Logarithmic Equations


Steps for Solving Exponential Equations

- 1. Isolate the exponential expression on one side.
- 2. Take the logarithm of each side. Then use laws of logarithms to "bring down" the exponent.
- 3 Solve for the variable.

Example 1: Solve each equation.



Example 2: Solve each equation.

Sometimes we have to solve by factoring.

Example 3: Solve each equation.

Steps for Solving Logarithmic Equations

- 1. Isolate the logarithmic term on one side of the equation. You may need to use the laws of logarithms to first combine the logarithmic terms.
- 2. Write the equation in exponential form (or raise the base to each side of the equation).
- 3. Solve for the variable.

**4. Check to make sure your solution is not extraneous.

Example 4: Solve each equation.

a)
$$\lim_{x \to 8} x = 8$$

$$\to e^9 = x$$

$$x \approx 2980.958$$

$$\to e^9 = 8$$

b)
$$\log_2(25 - x) = 3$$

 $2^3 = 25 - x$
 $8 = 25 - x$
 $-25 - 75$
 $-17 = -x$
 $\log_2(25 - 17) = 3$
 $\log_2(8 = 3)$

Example 5: Solve each equation.

a)
$$4/+ 3 \log (2x) = 16$$

$$\frac{3 \log (2x)}{2} = \frac{12}{3}$$

$$\log (2x) = 4$$

$$\log^{4} = 2x - \frac{10,000}{2} = \frac{2x}{2}$$

$$\log (x + 2) + \log (x - 1) = 1$$

$$\log (x + 2)(x - 1) = 1$$

$$\log (x + 2)(x - 1)$$

$$\log (x + 2)$$

Example 6: Solve each equation graphically.

(Do you remember what else solutions are called?)

$$x^2 = 2 \ln(x + 2)$$

 $y = x^2$
 $y = 2 \ln(x+2)$
 $y = 2 \ln(x+2)$