7.5 Part 2 Writing Polynomial Functions

Complex Conjugate Root Theorem

If P is a polynomial function with real-number coefficients and a + bi (where $b \ne 0$) is a root of P(x) = 0, then a - bi is also a root of P(x) = 0.

In other words...

Complex zeros always come in conjugate pairs.

Example 1

Write a polynomial function, P, infactored form and in standard form by using the given information.

P is of degree 2; zeros: 4, -2
quadratic

Factored
$$P(x) = (x-4)(x+2)$$

$$P(x) = x^2 + 2x - 4x - 8$$
standard $P(x) = x^2 - 2x - 8$

Example 2

Write a polynomial function, P, infactored form and in standard form by using the given information.

P is of degree 2;
$$P(0) = 15$$
; zeros: -3, 1
quadratic $x = 0$ $y = 15$ $x = 0$; $y = 15$ $y = 0$; y

Example 3

Write a polynomial function, P, infactored form and in standard form by using the given information.

P is of degree 3;
$$P(0) = -4$$
; zeros: -1 (mult. of 2), 2
 $x = 0$ $y = -4$
 $P(x) = \alpha(x+1)(x+1)(x-2)$
 $-4 = \alpha(0+1)(0+1)(0-2)$
 $-4 = -2\alpha$
 $2 = \alpha$
factored $P(x) = 2(x+1)(x+1)(x-2)$
 $P(x) = (2x+2)(x^2-x-2)$
 $P(x) = 2x(x^2-x-2)+2(x^2-x-2)$
 $P(x) = 2x^3-2x^2-4x+2x^2-2x-4$
Standard $P(x) = 2x^3-6x-4$

Example 4

Write a polynomial function, P, infactored form and in standard form by using the given information.

P is of degree 4;
$$P(0) = 6$$
; zeros: 3, -4, i, -i

$$P(x) = a (x-3)(x+4)(x-i)(x+i)$$

$$6 = a (0-3)(0+4)(0-i)(0+i)$$

$$6 = a (-3)(4)(-i)(i)$$

$$6 = 122 a$$

$$\frac{6}{-12} = -\frac{12}{12}$$

$$-\frac{1}{2} = a$$

$$P(x) = -\frac{1}{2}(x-3)(x+4)(x-i)(x+i)$$

$$P(x) = \frac{1}{2}(x^2+x-12)(x^2-x^2)$$

$$P(x) = \frac{1}{2}(x^2+x-12)(x^2+1)$$

$$P(x) = \frac{1}{2}x^2(x^2+x-12) + 1(x^2+x-12)$$

$$P(x) = \frac{1}{2}x^4 + x^3 - 12x^2 + x^2 + x - 12$$
Standard
$$P(x) = -\frac{1}{2}x^4 - \frac{1}{2}x^3 + \frac{11}{2}x^2 - \frac{1}{2}x + 6$$

Example 5

Write a polynomial function, P, infactored form and in standard form by using the given information.

```
P is of degree 3; P(0) = 2; zeros: -5, 2i, -2i

i^2 = -1

P(x) = \alpha (x+5)(x-2i)(x+2i)
2 = \alpha(0+5)(0-2i)(0+2i)
2 = \alpha(5)(-2i)(2i)
2 = -20i^2 \alpha
2 = -20i-1 \alpha
2 = \frac{20\alpha}{20}
\frac{1}{10} = \alpha

Pactored P(x) = \frac{1}{10}(x+5)(x-2i)(x+2i)
(x^2 + 2ix - 2ix - 4i)
P(x) = \frac{1}{10}(x^3 + 4x + 5x^2 + 20)

Standard P(x) = \frac{1}{10}x^3 + \frac{1}{2}x^2 + \frac{1}{2}x + 2
```