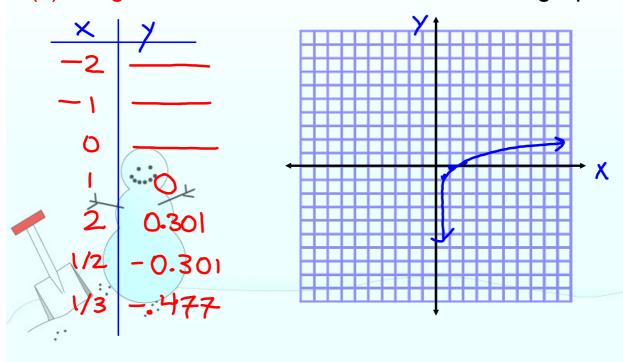

4.3 Part 2 Logarithmic Functions

We learned about the common logarithm that has base 10. This is the only base that the calculator recognizes.


Example 1

Use a calculator to evaluate each expression to four decimal places.

Example 2

Use a calculator to find appropriate values of f(x) = log x and use the values to sketch the graph.

Of all possible bases a for logarithms, it turns out that the most convenient choice for the purposes of calculus is the number e.

The logarithm with the base e is called the natural logarithm.

$$log_e x = ln x$$

The natural logarithmic function is the inverse of the exponential function $e^x = y$.

$$In x = y \iff e^y = x$$

Example 3

Express in exponential form.

a)
$$\ln 9 = x$$

 $\log_2 9 = x$

$$e^{x} = 9$$

b)
$$ln(x - 8) = 4$$

 $log_e(x-8) = 4$
c) $ln(x + 4) = 7$

$$e^{4} = x - 8$$

c)
$$\ln(x + 4) = 7$$
 $e^7 = x + 4$

Example 4

Express in logarithmic form.

a) $e^x = 6$ $\log_e 6 = x$

$$ln 6 = x$$

b) $e^5 = y$ $\log_e y = 5$

$$ln y = 5$$

c) $e^{x-4} = 2.5$ log_e 2.5 = x - 4

$$ln 2.5 = x - 4$$

Properties of Natural Logarithms

- 1. In 1 = 0
- 2. $\ln e = 1$
- 3. $\ln e^x = x$
- $4. e^{\ln x} = x$

Example 5

Evaluate.

- a) $ln e^8 = 8$
- b) $\ln \frac{1}{e^2} = \ln e^{-2} = -2$
- c) $e^{\ln\sqrt{5}} = \sqrt{5}$
- d) $e^{\ln \frac{1}{4}} = \frac{1}{4}$

Example 6

Use a calculator to evaluate to four decimal places.

- a) In 7 ≈ 1.9459
- b) In √6 ≈ 0.8959
- c) In $\frac{3}{4}$ \approx 6.2877

Remember, you cannot take the logarithm of a negative number. This means that you can ONLY take the logarithm of positive numbers. This is important when finding the domain of a logarithm.

Example 7

Find the domain.

a)
$$\ln (4 - x^2)$$

b) -logX

$$D:(0,\infty)$$

c)
$$\log (-x) - x > 0$$

$$D:(-\infty, \circ, \times < 0)$$