4.3 Part 1 Logarithmic Functions

Every exponential function $\boldsymbol{f}(\boldsymbol{x})=\boldsymbol{a}^{\boldsymbol{x}}$ with $\boldsymbol{a}>0$ and $\boldsymbol{a} \neq 1$ is a one-to-one function by the horizontal line test.

Therefore it has an inverse function, which is called the logarithmic function.
exponential form logarithmic form

$$
\theta=x \quad \Leftrightarrow \quad \log _{a} x=\underset{e \uparrow p}{y}
$$

Example 1
Rewrite each exponential in logarithmic form.
a)

$$
\begin{aligned}
& \frac{10^{5}}{\text { base }}=100,000 \quad \log _{10} 100,000=5 \\
& \\
& \\
& \\
& \\
& \log _{\text {exp }} \text { base } 10 \text { of } \\
& 100,000 \text { is } 5^{\prime \prime}
\end{aligned}
$$

b)

$$
\log _{3} 9=2
$$

c) ${\left.\frac{(1}{2}\right)^{2^{2}}}_{\text {ease }}^{\text {exp }}=\frac{1}{4}$

$$
\log _{\frac{1}{2}} \frac{1}{4}=2
$$

Example 2

Rewrite each logarithm in exponential form.
a) $\log _{3} 81=4$

$$
3^{4}=81
$$

b) $\log _{2}\left(\frac{1}{8}\right)=-3$

$$
2^{-3}=\frac{1}{8}
$$

c) $\log _{5} s=r$

$$
5^{r}=s
$$

It is important to remember that $\log _{a} x$ is an exponent! The answer to every log is the exponent!

Example 3

Evaluate each logarithm.
a) $\log _{5} 25=x$

$$
5^{x}=25 \rightarrow 5^{(x)}=5^{(2)}
$$

$\log _{5} 25=2$
b) $\log _{10} \cdot 1=-1$
c) $\log _{\frac{1}{3}} 27=-3$

$$
\begin{aligned}
10^{x} & =-1 \\
10 & =\frac{1}{10} \\
18^{8} & =0^{00} \\
\frac{1}{3} & =27 \\
\frac{13}{3} & =30 \\
\frac{-x}{-1} & =\frac{3}{-1} \\
x & =-3
\end{aligned}
$$

Since the log function is the inverse of the exponential function, it can be graphed by switching the domain and range.

Since $f(x)=a^{x}$ is a rapidly increasing function, $f(x)=\log _{a} x$ is a very slowly increasing function.

Notice...

1) that since $a^{0}=1$, then $\log _{a} 1=0$.
2) that since the \boldsymbol{x}-axis is the asymptote for the exponential function, then the y-axis is the asymptote for the log function (unless there is a shift).
3) that the log function is a reflection
across the line $\boldsymbol{y}=\boldsymbol{x}$.

Example 4

Sketch the graph by making a table and plotting points. State the domain, range, and any asymptotes.

$$
\begin{aligned}
& f(x)=\log _{2} x \\
& y=\log _{2} x \\
& \left.2^{y}=x=\frac{x}{4}=2^{-2} \right\rvert\,-2 \\
& 1 / 2=2^{-1} 0^{-1} \\
& \begin{array}{ll}
1=20 \\
2 & =2 \\
i & 1 \\
4 & =2^{2} \\
2
\end{array}
\end{aligned}
$$

Example 5

Sketch the graph by making a table and plotting points. State the domain, range, and any asymptotes.

$$
\begin{aligned}
& f(x)=2+\log _{2}(x-3) \\
& \begin{aligned}
&-\frac{y}{2}=2+\log _{2}(x-3) \\
& y-2=2 \log _{2}(x-3)
\end{aligned}
\end{aligned}
$$

Example 6

Sketch the graph by making a table and plotting points. State the domain, range, and any asymptotes.

$$
\begin{aligned}
& f(x)=\log _{2} x \\
& f(x)=0 \log _{2} x
\end{aligned}
$$ reflection over x-axis

$$
\begin{array}{cc|c}
y=-\log _{2} x & x & y \\
-y=\log _{2} x & 4 & -2 \\
z^{-y}=x & 1 & -1 \\
& 1 / 2 & 1 \\
& 1 / 4 & 2
\end{array}
$$

$$
\begin{aligned}
& \text { Properties of Logarithms } \\
& \begin{array}{l}
\text { 1. } \log _{a} 1=0 \longrightarrow a^{0}=1 \\
\text { 2. } \log _{a} a=1 \longrightarrow a^{1}-a \\
\text { 3. } \log _{a} a^{8}=x \longrightarrow a^{x}=a^{x} \\
\text { 4. } n^{\log Q} \otimes=x
\end{array}
\end{aligned}
$$

The logarithm with base 10 is called the common logarithm and is written by omitting the base.

$$
\begin{aligned}
& y=\log _{0} x \\
& \text { undestrod to } \\
& \text { be there }
\end{aligned}
$$

Example 7

Evaluate using the properties of logs.
a) $\log 7=1$
b) $8^{100}{ }_{8}^{11}=11$
c) $\log _{2} 2^{5}=5$
d) $\log _{9} 1=0$

Example 8
Evaluate using the properties of logs.
a) $\log _{4} 16=2$

$$
4^{x}=16
$$

b) $\log _{2} \frac{1}{16}=-4$
c) $\log _{\frac{1}{3}} 81=-4$

$$
\log _{\frac{1}{3}}\left(\frac{1}{81}\right)^{-1} \rightarrow \log _{\frac{1}{3}}(3)
$$

d)

$$
\begin{aligned}
& \log _{8} \sqrt{2}=\frac{1}{6} \\
& \log _{8} 2^{1 / 2}=x
\end{aligned} 8^{x}=2^{1 / 2} \rightarrow\left(2^{3 x}\right)=2^{1 / 2} \frac{1}{3} \cdot 3 x=\frac{1}{2} \cdot \frac{1}{3}
$$

Example 9
Evaluate using the properties of logs.
a) $\log _{5} \frac{1}{125}=-3 \quad \log _{5} \frac{1}{5^{3}} \rightarrow \log _{5} 5^{3}$
b) $\left.\log _{\frac{1}{4}} 2=-\frac{1}{2} \quad \frac{1}{4}^{x}=2 \rightarrow\left(\frac{1}{2^{2}}\right)^{x}=2 \rightarrow\left(2^{2}\right)^{2}\right)=2$ $-2 x=1$
c) $\log _{25} \sqrt[4]{5}=\frac{1}{8}$

$$
25^{x}=5^{\frac{1}{4}} .
$$

$$
\text { d) } \log _{10} 1000=3
$$

$$
\log _{10} 10^{3}
$$

$$
\begin{aligned}
\left.\rightarrow 5^{2}\right)^{2} & =5^{4} \\
2 x & =\frac{1}{4} \\
x & =\frac{1}{8}
\end{aligned}
$$

