4.2 Use Linear Equations in Slope-Intercept Form $\underset{y}{\mathcal{L}}=m \times+b$
Write an equation of the line in slope-intercept form that passes through the point $(-1,3)$ and has a slope of -4 . m $x_{1} y_{1}$

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-3=-4(x+1) \\
y-3=-4 x-4 \\
+3 \\
y=-4 x-1
\end{gathered}
$$

Write an equation of the line in slope-intercept form that passes through the point $(6,3)$ and has a slope of -2.m

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-3=-2(x-6) \\
y-3=-2 x+12 \\
+3=3 \\
y=-2 x+15
\end{gathered}
$$

Write an equation of the line in slope-intercept form that passes through the point $(-3,-11)$ and has a slope of $\frac{1}{2} \cdot m$

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y+11=\frac{1}{2}(x+3) \\
& y+11=\frac{1}{2} x+\frac{3}{2} \\
& -11-\frac{22}{2} \\
& y=\frac{1}{2} x-\frac{19}{2}
\end{aligned}
$$

Write an equation of the line in slope-intercept form that passes through $\left(\frac{9}{2}, 1\right)$ and $\left(-\frac{7}{2}, 7\right)$.

$$
\begin{aligned}
& m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& m=\frac{7-1}{-\frac{7}{2}-\frac{9}{2}}=\frac{6}{-8}=-\frac{3}{4} \\
& y-1=-\frac{3}{4}\left(x-\frac{9}{2}\right) \\
& y-1=-\frac{3}{4} x+\frac{27}{8}
\end{aligned} \quad \begin{aligned}
& y-7=-\frac{3}{4}\left(x+\frac{7}{2}\right) \\
& +1
\end{aligned} \begin{aligned}
& y-7=-\frac{3}{4} x-\frac{21}{8} \\
& y=-\frac{3}{4} x+\frac{35}{8}
\end{aligned}
$$

Your gym membership charge $\$ 35$ per_month after an initial membership fee. Roger has paid a total of $\$ 250$ after 6 months. (6, 250) months is
a) Write an equation that gives the total cost of a gym membership as a function of the length of membership.

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-250=35(x-6) \\
y-250=35 x-210 \\
+250=35 x+40
\end{gathered}
$$

b) Find the total cost of membership after 10^{x} months.

$$
y=35(10)+40
$$

 entry fee per race. Deandre paid a total of $\$ 76$ after 3 races. Chris paid a total of $\$ 124$ after 7 races.

```
\((3,76)\)
\((7,124)\)
a) How muth does the track \({ }^{x_{2}}\) membership cost?
\(m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\)
\(y-y_{1}=m\left(x-x_{3}\right)\)
\(y-76=12(x-3)\)
\(m=\frac{124-76}{7-3} \quad \begin{array}{ll}y-76=12 x-36 \\ +76\end{array} \quad \begin{aligned} & y=12 x+40\end{aligned}\)
\(m=\frac{48}{4}=12 \quad y=12 x+40\)
```

b) What is the entry fee per race?
$\$ 12 / \mathrm{race}$
c) Write an equation that gives the total cost as a function of the number of races entered.

$$
y=12 x+40
$$

