

POLYGON - A figure in a plane that meets the following conditions:

1. It is a closed figure formed by 3 or more coplanar segments called sides.
2. Sides that have a common endpoint are noncollinear.
3. Each side intersects exactly two other sides, but only at their endpoints.

Which of the following are polygons?

Decide whether the figures below are polygons. If it is not, explain why.
a)

c)

no doesn't intersect at endpoints
d)

not closed
e)

yes
f)

A convex polygon is a polygon such that no line containing a side of the polygon contains a point in the interior of the polygon.

A polygon that is not convex is concave.

Polygons are classified by

 the number of sides they have.| \# of Sides | Polygon |
| :---: | :---: |
| 3 | triangle |
| 4 | quadrilateral |
| 5 | pentagon |
| 6 | hexagon |
| 7 | heptagon |
| 8 | octagon |
| 9 | nonagon |
| 10 | decagon |
| 12 | dodecagon |
| n | n-gon |

When referring to a polygon, we use its name and list the vertices in consecutive order.

Pentagon RSTUV and pentagon TUVRS are two possible correct names for the polygon at the left.

The polygon above is a regular polygon, which means it is a convex polygon with all sides congruent and all angles congruent.

Polygons with more than 3 sides have diagonals.
diagonal - joins 2 nonadjacent vertices

Theorem 8.1: Polygon Interior Angle Theorem
 If a convex polygon has n sides and
 S is the sum of the measures of its interior angles, then $S=180(n-2)$.

Example 1

Find the measure of each interior angle) of the largest pentagon-shaped section of the Pentagon building. regular

$$
\begin{aligned}
& n=5 \\
& S=180(5-2) \\
& S=180(3) \\
& S=540^{\circ}
\end{aligned}
$$

Example 2
Six angles of a convex polygon are congruent. Each of the other two angles has a measure of 20 more than the measure of each of the other six angles. Find the measure of each angle.

$$
\begin{aligned}
& n=8 \\
& S=180(8-2) \\
& 6 x+2(x+20)=1080 \\
& S=180(6) \\
& 6 x+2 x+40=1080 \\
& S=1080^{\circ} \quad \begin{array}{l}
6 L^{\prime} s=130^{\circ} \\
2 \angle ' s=150^{\circ}
\end{array} \\
& 8 x+40=1080 \\
& \frac{8 x}{8}=\frac{1040}{8} \\
& x=130
\end{aligned}
$$

Example 3
The sum of the measures of tide interior angles of a convex polygon is 2340 . Classify the polygon by the number of sides. $n=$?

$$
\begin{aligned}
S & =180(n-2) \\
2340 & =180(n-2) \\
2340 & =180 n-360 \\
+360 & =3600 \\
\frac{2700}{180} & =\frac{180 n}{180} \\
n & =15
\end{aligned}
$$

Example 4

Use the diagram below to find $m \angle S$ and $m \angle T$.

Theorem 8.2: Polygon Exterior Angle Theorem If a polygon is convex, then the sum of the measures of the exterior angles, one at each vertex, is 360 .

Example 5

Find the measure of each interior angle and exterior angle of a regular octagon.

$$
\begin{gathered}
\frac{360}{8}(\text { all ext }(\text { it of ext } \angle s) \\
\downarrow \\
45^{\circ}=\operatorname{ext} \angle=y \\
135^{\circ}=\ln t \angle=x
\end{gathered}
$$

Example 6
The measure of an exterior angle of a regular polygon is 14.4. Find the number of sides in the polygon.

$$
\frac{360(\text { all ext }\langle s)}{14.4(1 \text { ext }<)}=25 \quad 25 \text { sides }
$$

Example 7
The measure of an interior angle of a regular polygon is 144. Find the number of sides in the polygon.

$$
\frac{360}{36}=10
$$

10 sides

Example 8
Find the value of x.

$$
\begin{array}{rl}
32+40+85+48+52+2 x=360 \\
257+2 x & =360 \\
2 x & =103 \\
x & x=51.5
\end{array}
$$

